-
Notifications
You must be signed in to change notification settings - Fork 0
/
scattering.py
653 lines (510 loc) · 22.3 KB
/
scattering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
import numpy as np
import scipy
import scipy.signal
import matplotlib.pyplot as plt
import scipy.io.wavfile
#import numpy.fft as fft_module
import scipy.fftpack as fft_module
from scipy.signal import chirp
"""
Created on July 2016
@author: ravikiran, ENS Paris
"""
def _ispow2(N):
""" Checks if N is a power of 2"""
return 0 == (N & (N - 1))
def get_mother_frequency(nfo):
"""Function returns the dimensionless mother frequency
Parameters
----------
nfo : Number of Filters per Octave
Returns
-------
mother_frequency : dimensionaless mother center frequency
Notes
-----
The dimensionless mother center frequency xi (corresponding to a log period
\gamma=0) is computed as the midpoint between the center frequency of the
second center frequency xi*2^(-1/nfo) (corresponding to \gamma
equals 1) and the negative mother center frequency (1-xi). Hence the eqn.
2 xi = xi*2^(-1/nfo) + (1-xi), from which we derive :
xi = 1 / (3 - 2^(1/nfo)). This formula is valid only when the
wavelet is a symmetric bump in the Fourier domain.
References
----------
.. [1] https://github.com/lostanlen/WaveletScattering.jl
Implementation of scattering transform in Julia by V. Lostanlen
"""
mother_frequency = 1.0 / (3.0 - 2.0**(-1.0 / nfo))
return mother_frequency
def get_wavelet_filter_specs(nfo, quality_factor, nOctaves):
"""Create wavelet filter specs : centerfrequecy, bandwidth
Wavelet filter specs are independent of the signal length and resolution.
Parameters
----------
nfo : (scalar or list of size M)
number of wavelets per octave in the fourier domain
quality_factor : (scalar or list of size M)
This is the ratio of center freq. to bandwidth
nOctaves (scalar or list of size scattering order)
number of octaves covering the fourier domain
M : scattering order
the order of scattering transform (max tested = 2)
Returns
-------
psi_specs[gamma] : gamma indexed dictionary that contains the tuple
(centerfrequency, bandwidth)
#gammas = nfo * nOctaves
Notes
-----
To be sure that we calculate valid wavelet filters in higher orders we need
to check the following condition :
xi_1 2^(-\gamma_1/Q1) / Q1 > xi_2 2^(-\gamma_2/Q2)
Bandwidth of the wavelet filter (@some gamma) for order
M > Center frequency for wavelet filter(@gamma) for order M+1.
at Q1=Q2=nfo=1 (dyadic) we have xi_1 = xi_2
we have the resulting condition to be :
\gamma_1 < \gamma_2
Though this does not hold for other values of Q1, Q2
References
----------
.. [1] https://github.com/lostanlen/WaveletScattering.jl
Implementation of scattering transform in Julia by V. Lostanlen
"""
#check there are only 2 values of nfo possible
assert(len(nfo)<=2)
psi_spec_order = {}
for order in range(len(nfo)):
mother_frequency = get_mother_frequency(nfo[order])
psi_specs = {}
fc_vec = []
bw_vec = []
for j in range(nOctaves):
for q in range(0, nfo[order]):
gamma = j * nfo[order] + q
resolution = np.power(2, -gamma / nfo[order])
centerfrequency = mother_frequency * resolution
bandwidth = centerfrequency / quality_factor
psi_specs[(j,q)] = (centerfrequency, bandwidth)
fc_vec.append(centerfrequency)
bw_vec.append(bandwidth)
psi_spec_order[order] = (psi_specs, fc_vec, bw_vec)
if(display_flag):
plt.figure()
plt.plot(fc_vec)
plt.plot(bw_vec)
plt.title('Normalized bw and Fc for order =' +repr(order))
plt.xlabel('Filter index')
plt.ylabel('Normalized Center Frequency f in [0,1]')
plt.legend(('fc','bw'))
return psi_spec_order
def filterbank_morlet_1d(N, psi_specs, nOctaves):
"""Function returns complex morlet 1d wavelet filter bank
Parameters
----------
N : integer > 0
length of input signal that is a power of 2 (after chunking)
nOctaves : integer > 0
number of octaves/scales covering the frequency domain,
nOctaves <= log2(N)
nfo : integer > 0
number of wavelet filters per octave
Returns
-------
psi : dictionary
dictionary of morlet wavelet filters indexed with different gamma
phi : array_like
low pass filter
lp : array_like
Littlewood payley function : Measure of quality of the filter bank for
signal representation, it should be as close as possible to 1.
References
----------
.. [1] Anden, J., Mallat S. 'Deep Scattering Spectrum'.
IEEE Transactions on Signal Processing 2014
Notes
-----
calculate bandpass filters \psi for size N and J different center
frequencies and low pass filter \phi and resolutions res < log2(N)
The max. and min. of the littlewood payley function needs to be close to 1
This preserves norm and ensures contractive operator
TODO : correct the bandwidth of low pass filter (add this at the end)
TODO : Morlet with corrections: _corrected_morlet_1d
"""
psi = {} #wavelet
lp = np.zeros(shape=(N)) #little-wood payley
lp_afternorm = np.zeros(shape=(N)) #little-wood payley
FWHM_factor = 10 * np.log(2) #fullwidth at half max factor
for index in psi_specs:
fc, bandwidth_psi = psi_specs[index]
den = bandwidth_psi**2 / FWHM_factor
psi[index] = _morlet_1d(N, fc, den)
lp = lp + np.square(np.abs(psi[index]))
phi = _gaussian(N, nOctaves)
lp = lp + np.square(np.abs(phi[1]))
lp[1::] = (lp[1::] + lp[-1:0:-1]) * 0.5
normalizer_lp = np.max(np.sqrt(lp))
for index in psi:
psi[index] = psi[index] / normalizer_lp
phi = phi / normalizer_lp
for index in psi_specs:
lp_afternorm = lp_afternorm + np.square(np.abs(psi[index]))
lp_afternorm = lp_afternorm + np.square(np.abs(phi[1]))
lp_afternorm[1::] = (lp_afternorm[1::] + lp_afternorm[-1:0:-1]) * 0.5
if(display_flag):
plt.figure()
plt.title('Littlewood Payley function')
plt.plot(lp)
plt.plot(lp_afternorm)
plt.legend(('Before Norm', 'After Norm'))
filters = dict(phi=phi, psi=psi)
return (filters, lp)
def filterbank_to_multiresolutionfilterbank(filters, max_resolution):
"""Converts a filter bank into a multiresolution filterbank
For every filter in the filter bank, compute different resolutions
(differnt support). The input filters are assumed to be in the
This precalculated Multiresolution filter bank will speed up
calculation of convolution of signal at the output of different
wavelet filters and different resolutions.
Parameters
----------
filters : dictionary
Set of filters stored in a dictionary in the following way:
- filters['phi'] : Low pass filter at resolutions nOctaves to J
- filters['psi'] : Band pass filter (Morlet)
where 'j' indexes the scale and 'q' indexes the nfo
of a single filter.
max_resolution : int
number of resolutions to compute for every filter
filterbank_to_multiresolutionfilterbank iterates first through
j in range(J) and then through the resolution based on current J.
This changes the structure of wavelet_filters
for j in range(nOctaves):
for q in range(nfo):
for res in range(0,max(j-1,0)+1):
get_filter_at_resoluion(wavelet_filters['psi][(j,q)],res)
Returns
-------
filters_multires : dictionary
Set of filters in the Fourier domain, at different scales & resolutions
See multiresolution_filter_bank_morlet1d for more details
"""
keys_jq = max(list(filters['psi'].keys()))
nOctaves = keys_jq[0] + 1
nfo = keys_jq[1] + 1
Phi_multires = []
Psi_multires = {}
for res in range(0,max_resolution):
Phi_multires.append(_get_filter_at_resolution(filters['phi'],res))
for j in range(nOctaves):
for q in range(nfo):
Psi_multires[(j,q)] = {}
filt = filters['psi'][(j,q)]
for res in range(0,max(j-1,0)+1):
Psi_multires[(j,q)][res] = _get_filter_at_resolution(filt,res)
filters_multires = dict(phi=Phi_multires, psi=Psi_multires)
return filters_multires
def _gaussian(N, nOctaves):
"""Function calculates the gaussian function of length N with bandwidth
0.4 * 2**(-nOctaves+1). This creates the low pass filter that is used
to average the wavelet filtered signal at different scales.
Parameters
----------
N : length of signal
nOctaves : Number of octaves
Returns
-------
phi : array like
low pass filter in fourier domain
"""
f = np.arange(0, N, dtype=float) / N # normalized frequency domain
bandwidth_phi = 0.4 * 2**(-nOctaves+1)#is this the right bandwidth?
phi = np.exp(-np.square(f) * 10 * np.log(2) / bandwidth_phi**2)
return phi
def _morlet_1d(N, fc, den):
"""Morlet wavelet at center frequency and bandwidth
Parameters
----------
N : integer
length of filter
fc : float
center frequency
den : denominator of gaussian with sigma**2
Returns
-------
Morlet filter with these parameters of length N
"""
# normalized frequency axis
f = np.arange(0, N, dtype=float) / N
return 2 * np.exp(- np.square(f - fc) / den).transpose()
def _get_filter_at_resolution(filt,j):
"""Computes filter 'filt' at resolution 'j'
Parameters
----------
filt : array
Filter in the Fourier domain.
j : int
Resolution to be computed
Returns
-------
filt_multires : array
Filter 'filt' at the resolution j, in the Fourier domain
"""
N = filt.shape[0]
assert _ispow2(N), 'Filter size must be an integer power of 2.'
# Truncation in fourier domain and suming over responses from other bands
# back into the truncated fourier domain (make sure there are no or
# neglible responses in these frequencies, otherwise leads to aliasing)
mask = np.hstack((np.ones(int(N / 2 ** (1 + j))), 0.5, \
np.zeros(int(N - N / 2 ** (j + 1) - 1)))) \
+ np.hstack((np.zeros(int(N - N / 2 ** (j + 1))), \
0.5, np.ones(int(N / 2 ** (1 + j) - 1))))
#truncation by using mask and reshape
filt_lp = np.complex64(filt*mask)
fold_size = (int(2 ** j), int(N / 2 ** j))
filt_multires = filt_lp.reshape(fold_size).sum(axis=0)
return filt_multires
def scattering(x,wavelet_filters=None,wavelet_filters_order2=None,M=2):
"""Compute the scattering transform of a signal using the filter bank.
Parameters
----------
x : array_like
input signal
Length of x needs to be a power of 2.
wavelet_filters : Dictionary
Multiresolution wavelet filter bank
M : int
Order of the scattering transform, which can be 0, 1 or 2.
Returns
-------
S : 2D array_like
Scattering transform of the x signals, of size (num_coeffs, time).
U : array_like
Result before applying the lowpass filter and subsampling.
S_tree : dictionary
Dictionary that allows to access the scattering coefficients (S)
according to the layer and indices. More specifically:
Zero-order layer: The only available key is 0:
S_tree[0] : 0th-order scattering transform
S_tree[1] : 1st-order coefficients nOctaves*nfo \times window_size matrix
S_tree[2] : 2nd-order coefficients with nOctaves, nfo, nfo2 as params:
nOctaves*nfo + nOctaves * (nOctaves - 1) *nfo*nfo2 // 2 \times window_size
matrix
References
----------
.. [1] Anden, J., Mallat S. 'Deep Scattering Spectrum'.
IEEE Transactions on Signal Processing 2014
.. [2] Bruna, J., Mallat, S. 'Invariant Scattering Convolutional Networks'.
IEEE Transactions on PAMI, 2012.
Examples
--------
"""
if(not _ispow2(len(x))):
max_J = int(np.ceil(np.log2(len(x))))
x = np.append(x, np.zeros(2**max_J-len(x)))
if(wavelet_filters==None):#build filters
N = len(x)
nfo = [12, 1]
nOctaves = 10
quality_factor = 4 #defaults
psi_specs_order = get_wavelet_filter_specs(nfo, \
quality_factor, nOctaves)
psi_specs, _, _ = psi_specs_order[0]
filters, _ = filterbank_morlet_1d(N, psi_specs, nOctaves)
wavelet_filters = \
filterbank_to_multiresolutionfilterbank(filters, nOctaves)
if(M==2 and wavelet_filters_order2==None):
psi_specs_2, _, _ = psi_specs_order[1]
filters_order2, _ = filterbank_morlet_1d(N, psi_specs_2, nOctaves)
wavelet_filters_order2 = \
filterbank_to_multiresolutionfilterbank(filters_order2, nOctaves)
keys_jq = max(list(wavelet_filters['psi'].keys()))
nOctaves = keys_jq[0] + 1
nfo = keys_jq[1] + 1
#for second order
if(M==2):
keys_jq_order2 = max(list(wavelet_filters_order2['psi'].keys()))
nfo2 = keys_jq_order2[1] + 1
else:
nfo2 = nfo
num_coefs = {
0: int(1),
1: int(1 + nOctaves*nfo),
2: int(1 + nOctaves*nfo + nOctaves * (nOctaves - 1) * nfo * nfo2 // 2)
}.get(M, -1)
window_size = int(x.shape[0]/2**(nOctaves-1)) # #coeffecients in time
oversample = 1 # subsample at rate a bit lower than the critic frequency
U = []
v_resolution = []
current_resolution = 0
#output coefficients matrix
S = np.zeros((num_coefs,window_size))
S_tree = {}
Xf = fft_module.fft(x) # precompute the fourier transform of the signal
ds2 = len(Xf)//window_size
lp_filter = wavelet_filters['phi'][current_resolution]
S[0, :] = ds2* np.abs(fft_module.ifft(Xf*lp_filter))[::ds2]
S_tree[0] = S[0, :].view()
if M > 0: #First order scattering coeffs
num_order1_coefs = nOctaves*nfo
S1 = S[1:num_order1_coefs+1,:].view()
S1.shape=(num_order1_coefs,window_size)
indx = 0
if(nfo==1 and display_flag):
#display only when Q =1 otherwise too many signals to plot
fig, axarr = plt.subplots(nOctaves, sharex=True)
fig2, axarr2 = plt.subplots(nOctaves, sharex=True)
fig3, axarr3 = plt.subplots(nOctaves, sharex=True)
fig_title = "Filtered O/p & Mask for fourier Truncation (Fourier)"
fig2_title = "Lowpass filters with non-zero support (Fourier)"
fig3_title = "Filtered signal and its absolute value (Time)"
fig.suptitle(fig_title, fontsize=14)
fig2.suptitle(fig2_title, fontsize=14)
fig3.suptitle(fig3_title, fontsize=14)
for j in range(nOctaves):
resolution = max(j-oversample, 0)
v_resolution.append(resolution) # resolution for the next order
ds = 2**resolution
lp_filter = wavelet_filters['phi'][resolution]
for q in range(nfo):
filtersjq = wavelet_filters['psi'][(j,q)][current_resolution]
#Fourier truncate eqs subsample in time
x_conv_f = Xf*filtersjq
len_x_conv_f = len(x_conv_f)
x_conv_f_truncate = x_conv_f[:len_x_conv_f//ds]
x_conv = fft_module.ifft(x_conv_f_truncate)
x_conv_mod = np.abs(x_conv)
x_conv_mod_f = fft_module.fft(x_conv_mod)
ds2 = len(x_conv_mod_f)//window_size
S1[indx, :] = ds2* np.abs(fft_module.ifft(x_conv_mod_f*lp_filter))[::ds2]
U.append(x_conv_mod)
if(print_flag):
x_conv_time_sub = ds*fft_module.ifft(x_conv_f)[::ds]
disp_str = '-->j, q, res = ' + repr((j,q,resolution)) + \
'-Fourier_trunc==subsample_time =' + \
repr(np.allclose(x_conv_time_sub,x_conv))
disp_str2 = '--phi_len = ' + repr(len(lp_filter)) + \
'--Max='+repr(max(S[indx,:]))
print(disp_str + disp_str2)
if(nfo==1 and display_flag):
mask = np.zeros(x_conv_f.shape)
mask[:len_x_conv_f//ds] = max(np.abs(x_conv_f))
axarr[indx].plot(np.abs(x_conv_f))
axarr[indx].plot(mask,'k--')
axarr[indx].set_title('Mask Length =' + repr(sum(mask>0)))
phi_support_len = np.sum(np.abs(lp_filter)!=0)
plot_xlen = max(phi_support_len, window_size)
mask_phi = np.zeros((plot_xlen))
mask_phi[:phi_support_len] = max(np.abs(lp_filter))
mask_window_size = np.zeros((plot_xlen))
mask_window_size[:plot_xlen] = max(mask_phi) + 1
axarr2[indx].plot(lp_filter[:plot_xlen])
axarr2[indx].plot(mask_phi,'k--')
axarr2[indx].plot(mask_window_size,'r--')
title_2 = 'Non-zero support of lowpass = '
axarr2[indx].set_title(title_2 + repr(phi_support_len))
axarr3[indx].plot(U[indx])
axarr3[indx].plot(x_conv)
# axarr3[indx].set_title('Max_val ='+repr(max(S1[indx, :])))
indx = indx + 1
S_tree[1] = S1.view()
if(display_flag):
plt.figure()
plt.imshow(S1, aspect='auto', cmap='jet')
plt.title('First Order Coeffs : ' + repr(S1.shape) )
plt.xlabel('Time window')
plt.ylabel('octave J')
plt.colorbar()
if M > 1:
#Smaller nfo2 largely reduces the number of coefficients.
num_order2_coefs = nOctaves*(nOctaves-1)*nfo*nfo2//2
S2 = S[num_order1_coefs+1:num_coefs, :].view() # view of the data
S2.shape = (num_order2_coefs, window_size)
indx = 0
for j1 in range(nOctaves):
#pick resolution of filtered signal stored during U1 calculation.
current_resolution = v_resolution[j1]
lp_filter = wavelet_filters_order2['phi'][current_resolution]
for q1 in range(nfo):
Ujq = fft_module.fft(U[j1*nfo+q1])
for j2 in range(j1+1,nOctaves):
for q2 in range(nfo2):
# | U_lambda1 * Psi_j2 | * phi
filtersj2q2 = wavelet_filters_order2['psi'][(j2,q2)][current_resolution].view()
#Subsampling is only required in order 1 to set the resolution of the signal decided by the wavelet bandpass filters
x_conv = np.abs(fft_module.ifft(Ujq*filtersj2q2))
x_conv_f = fft_module.fft(x_conv)
ds2 = len(x_conv_f)//window_size
Uj2 = ds2* np.abs(fft_module.ifft(x_conv_f*lp_filter))[::ds2]
S2[indx, :] = Uj2
indx = indx+1
S_tree[2] = S2.view()
if(display_flag):
plt.figure()
plt.imshow(S2, aspect='auto', cmap='jet')
plt.title('Second Order Coeffs')
plt.colorbar()
return S, U, S_tree
def test_scattering(nfo, quality_factor, nOctaves, N, M):
"""Test scattering transform
Parameters
----------
nfo : integer
Number of wavelet filters per octave in the fourier domain.
quality_factor : integer
The quality factor for all wavelet filters (by default 1)
nOctaves : integer
Number of Octaves or scales
N : integer
length of input signal ( this is just for testing)
M : integer
scattering order (can be 1 or 2)
"""
def get_audio_test():
""" load test file from librosa/tests/data/test1_22050.wav """
(sr, y) = scipy.io.wavfile.read('./data/0506001a2.mp3.wav')
y = y.mean(axis=1)
return (y, sr)
def get_chirp(N):
"""Chirp signal of length N with 0 start freq and f1 at time t1 """
t = np.linspace(0, 20, N)
y = chirp(t, f0=0, f1=10, t1=10, method='linear')
return y
def get_dirac(N, loc):
""" Create dirac function at location loc of length N """
y = np.zeros(N)
y[loc] = 1
return y
#Read / Create signals
# uncomment to test chirp and dirac signals
(y, fs) = get_audio_test()
# y = get_dirac(N, int(N/8))
# y = get_chirp(N)
if(not _ispow2(len(y))):
max_J = int(np.ceil(np.log2(len(y))))
y = np.append(y, np.zeros(2**max_J-len(y)))
N = len(y)
assert(nOctaves < np.log2(N))
#create wavelet filters
psi_specs_order = get_wavelet_filter_specs(nfo, \
quality_factor, nOctaves)
psi_specs, _, _ = psi_specs_order[0]
filters, _ = filterbank_morlet_1d(N, psi_specs, nOctaves)
wavelet_filters = filterbank_to_multiresolutionfilterbank(filters, nOctaves)
if(M==2):
psi_specs_2, _, _ = psi_specs_order[1]
filters_order2, _ = filterbank_morlet_1d(N, psi_specs_2, nOctaves)
wavelet_filters_order2 = \
filterbank_to_multiresolutionfilterbank(filters_order2, nOctaves)
else:
wavelet_filters_order2 = None
scat,u,scat_tree = scattering(y, wavelet_filters=wavelet_filters, \
wavelet_filters_order2=wavelet_filters_order2, M=M)
coef_index, spatial = scat.shape
return scat
global display_flag, print_flag
display_flag, print_flag = 0, 0
#psi_specs = get_wavelet_filter_specs(nfo, 1, nOctaves)
#filters, lp = filterbank_morlet_1d(N, psi_specs, nOctaves)
#wavelet_filters = filterbank_to_multiresolutionfilterbank(filters, nOctaves)
#scat = test_scattering(**test_args)