-
Notifications
You must be signed in to change notification settings - Fork 0
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
studiare eigenvalues #3
Comments
Se un concetto atomico è un punto nello spazio, un concetto complesso (formato da 3atomi) crea un piano. E anch'esso tramite un manifold può essere mandato ad un punto della retta monodimensionale |
https://en.m.wikipedia.org/wiki/Submersion_(mathematics) Landa * I = [ x 0 0] Det[ A -landa*I] Ottengo equazione in x y z. Sostituendo tutte le combinazioni di x ,y ,z ottengo un manifold R^3 -> R. Ho mandato un piano sulla retta |
Trovata connessione con Hardy |
Whitehead Leggere da pag 262 di “Le matematiche” di Aleksandrov, Kolmogorov, Lavrent. Bollati Boringhieri, 2012 [da paragrafo 9 a paragrafo 14 del capitolo 3 - Geometria analitica-] Teorema Hamilton ti permette di trovare l'equazione caratteristica quadrata di una matrice A I coefficienti delle equazioni ridotte di circonferenze si esprimono per mezzo di invarianti e semi-invarianti e attraverso le radici della equazione caratteristica quadrata. <<Pag 297-301>> Le equazioni rappresentano figure nello spazio. Relazioni tra n variabili creano spazi vettoriali R^n. Le trasformazioni lineari o affini creano una contrazione della figura e gli eigenvector sono delle invarianti a tale contrazioni. Le trasformazioni ortogonali sono delle rotazioni o simmetrie della figura. Attraverso la rotazione di rette e piani si ottengono le 17 forme canoniche (ellissoide,iperboloide,cono...) dall'equazione di secondo grado in 3 variabili: Per intenderci: una trasformazione lineare di traslazione di un vettore v = {210,000,060} per il vettore q={1,0,0} otteniene il vettore m={211,000,060}. Se si guarda /traccia1/articolo/raganathan2 si vedrà che il vettore v rappresenta la stringa di soggetto "Matematica nel 1500", mentre il vettore m rappresenta "Algebra nel 1500". Quindi una trasformazione di traslazione è un movimento nell'albero della classificazione. Per il momento non ho trovato relazioni tra classificazione come spazio vettoriale e trasformazioni di scale e rotazioni o simmetrie, però ho questo spunto: Aggiunto il 22-11-2020 A Reeb graph[1] (named after Georges Reeb by René Thom) is a mathematical object reflecting the evolution of the level sets of a real-valued function on a manifold.[2] Level set Aggiunto il 06/12/2020 Aggiunto 10/01/21 Aggiunto 23/01/21 |
PCA Principal component analysis is used as a means of dimensionality reduction in the study of large data sets, such as those encountered in bioinformatics. In Q methodology, the eigenvalues of the correlation matrix determine the Q-methodologist's judgment of practical significance (which differs from the statistical significance of hypothesis testing; cf. criteria for determining the number of factors). More generally, principal component analysis can be used as a method of factor analysis in structural equation modeling. Graphs The principal eigenvector is used to measure the centrality of its vertices. An example is Google's PageRank algorithm. The principal eigenvector of a modified adjacency matrix of the World Wide Web graph gives the page ranks as its components. This vector corresponds to the stationary distribution of the Markov chain represented by the row-normalized adjacency matrix; however, the adjacency matrix must first be modified to ensure a stationary distribution exists. The second smallest eigenvector can be used to partition the graph into clusters, via spectral clustering. Other methods are also available for clustering. |
La mia teoria è una implementazione del draft shacl https://w3c.github.io/shacl/shacl-af/ . Ogni tupla è un punto nello spazio R^3. Una serie di punti fanno una shape. Ma si possono costruire con i round shape complesse che tornano ad essere punti. Quindi sparql è implementato allo stesso modo del mondo senza shape |
In applied mathematics, topological data analysis (TDA) is an approach to the analysis of datasets using techniques from topology. Extraction of information from datasets that are high-dimensional, incomplete and noisy is generally challenging. TDA provides a general framework to analyze such data in a manner that is insensitive to the particular metric chosen and provides dimensionality reduction and robustness to noise. Beyond this, it inherits functoriality, a fundamental concept of modern mathematics, from its topological nature, which allows it to adapt to new mathematical tools. In topological data analysis, data sets are regarded as a point cloud sampling of a manifold or algebraic variety embedded in Euclidean space. By linking nearest neighbor points in the cloud into a triangulation, a simplicial approximation of the manifold is created and its simplicial homology may be calculated. Finding techniques to robustly calculate homology using various triangulation strategies over multiple length scales is the topic of persistent homology ConcludendoTeorie moderne di homology vengono usate per lo studio di dati. L' homology si basa sullo studio di gruppi abeliani (Z,+). Le figure nello spazio tridimensionale, algebricamente, sono gruppi o operazioni tra gruppi. Ranganathan si era specializzato in teoria dei gruppi Ipotesi: Se una stringa di soggetto è un punto nello spazio a tre dimensioni, un testo o una serie di stringhe di soggetto sono una figura (shape). Se sono figure sono equazioni algebriche. Confrontare testi significa confrontare figure, studiare equazioni. Resta da capire cosa sono i buchi (holes). La matematica diventa difficile. Studiare Poincarre (analisys situs) e Galois Ref: |
Recently, Peter Gärdenfors has elaborated a possible partial explanation of prototype theory in terms of multi-dimensional feature spaces called conceptual spaces, where a category is defined in terms of a conceptual distance. More central members of a category are "between" the peripheral members. He postulates that most natural categories exhibit a convexity in conceptual space, in that if x and y are elements of a category, and if z is between x and y, then z is also likely to belong to the category.[13] In mathematics, more specifically in functional analysis, a Banach space (pronounced [ˈbanax]) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well defined limit that is within the space. Banach spaces are named after the Polish mathematician Stefan Banach, who introduced this concept and studied it systematically in 1920–1922 along with Hans Hahn and Eduard Helly.[1]Maurice René Fréchet was the first to use the term "Banach space" and Banach in turn then coined the term "Fréchet space."[2] Banach spaces originally grew out of the study of function spaces by Hilbert, Fréchet, and Riesz earlier in the century. Banach spaces play a central role in functional analysis. In other areas of analysis, the spaces under study are often Banach spaces. In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue (Dunford & Schwartz 1958, III.3), although according to the Bourbaki group (Bourbaki 1987) they were first introduced by Frigyes Riesz (Riesz 1910). Lp spaces form an important class of Banach spaces in functional analysis, and of topological vector spaces. Because of their key role in the mathematical analysis of measure and probability spaces, Lebesgue spaces are used also in the theoretical discussion of problems in physics, statistics, finance, engineering, and other disciplines. For 1 ≤ p ≤ ∞, Lp(S, μ) is a Banach space. The fact that Lp is complete is often referred to as the Riesz-Fischer theorem, and can be proven using the convergence theorems for Lebesgue integrals. In complex analysis, the Hardy spaces (or Hardy classes) Hp are certain spaces of holomorphic functions on the unit disk or upper half plane. They were introduced by Frigyes Riesz (Riesz 1923), who named them after G. H. Hardy, because of the paper (Hardy 1915). In real analysis Hardy spaces are certain spaces of distributions on the real line, which are (in the sense of distributions) boundary values of the holomorphic functions of the complex Hardy spaces, and are related to the Lp spaces of functional analysis. For 1 ≤ p ≤ ∞ these real Hardy spaces Hp are certain subsets of Lp, while for p < 1 the Lp spaces have some undesirable properties, and the Hardy spaces are much better behaved. Gärdenfors, Peter (2014). The Geometry of Meaning: Semantics Based on Conceptual Spaces. MIT Press. Bugajski, Sławomir (1983). Semantics in Banach spaces. Studia Logica 42 (1):81 - 88. Dessalles, Jean-Louis (2015). From Conceptual Spaces to Predicates. In Peter Gärdenfors & Frank Zenker (eds.), Applications of Conceptual Spaces. Springer Verlag. Douven, Igor ; Decock, Lieven ; Dietz, Richard & Égré, Paul (2013). Vagueness: A Conceptual Spaces Approach. Journal of Philosophical Logic 42 (1):137-160. |
From APUPA created by bertanimauro: bertanimauro/APUPA#4
e varietà dei polinomi. Scopo è trasformare frasi in polinomi e poi fare calcoli sui polinomi.
Base studio qui: https://docs.google.com/document/d/1JxKFb86Vg8iOV9zvaovDDyJDlMnRgrXWuumCCiDBLQA/edit?usp=sharing
The text was updated successfully, but these errors were encountered: