-
Notifications
You must be signed in to change notification settings - Fork 8
/
predict_metabolites.R
executable file
·73 lines (62 loc) · 2.28 KB
/
predict_metabolites.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#!/usr/bin/env Rscript
##################
# Load libraries #
##################
library(melonnpan)
library(optparse)
###########################
# Command line parameters #
###########################
option_list = list(
make_option(
c("-i", "--metag"), # i stands for input
type = "character"),
make_option(
c("-o", "--output"), # o stands for output
type = "character"),
make_option(
c("-w", "--weight.matrix"), default=NULL, # w stands for weight
type = "character"),
make_option(
c("-r", "--train.metag"), default=NULL, # r stands for RTSI
type = "character"),
make_option(
c("-s", "--criticalpoint"), default = 0.9793, # s stands for significance threshold
type = "numeric"),
make_option(
c("-c", "--corr.method"), default = "pearson", # c stands for correlation
type = "character"),
make_option(
c("-b", "--no.transform.metab"), default = FALSE,
action = "store_true"),
make_option(
c("-d", "--no.transform.metag"), default = FALSE,
action = "store_true"))
##########################
# Print progress message #
##########################
cat("Running MelonnPan-Predict using the following parameters:", "\n");
opt <- parse_args(OptionParser(option_list=option_list), positional_arguments = TRUE)
print(opt)
#####################
# Extract arguments #
#####################
metag<- opt$options$metag
output<-opt$options$output
weight.matrix<-opt$options$weight.matrix
train.metag <- opt$options$train.metag
criticalpoint <- opt$options$criticalpoint
corr.method <- opt$options$corr.method
no.transform.metab<- opt$options$no.transform.metab
no.transform.metag<- opt$options$no.transform.metag
######################################
# Predict metabolites in new samples #
######################################
DD<-melonnpan::melonnpan.predict(metag = metag,
output = output,
weight.matrix = weight.matrix,
train.metag = train.metag,
criticalpoint = criticalpoint,
corr.method = corr.method,
no.transform.metab = no.transform.metab,
no.transform.metag = no.transform.metag)