-
Notifications
You must be signed in to change notification settings - Fork 6
/
TTA_inference.py
129 lines (102 loc) · 4.41 KB
/
TTA_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import argparse
import os
from importlib import import_module
import pandas as pd
import torch
from torch.utils.data import DataLoader
from datasets.dataset import TestDatasetA, MaskBaseDataset
def load_model(saved_model, filename, modelname, num_classes, device):
model = None
if len(data := [s for s in os.listdir(saved_model) if s.endswith(filename)]) == 0:
raise Exception(f'cant find file. {filename}')
elif len(data) == 1 :
model_cls = getattr(import_module("models.model"), modelname)
model = model_cls(
num_classes=num_classes
)
# model = torch.nn.DataParallel(model)
model_path = os.path.join(saved_model, data[0])
model.load_state_dict(torch.load(model_path, map_location=device))
else :
model_cls = getattr(import_module("models.model"), 'ensemble')
model = model_cls(
modelname = modelname,
length = len(data),
num_classes=num_classes,
device = device
)
# model = torch.nn.DataParallel(model)
for M, d in zip(model.superM, data):
model_path = os.path.join(saved_model, d)
M.load_state_dict(torch.load(model_path, map_location=device))
return model
@torch.no_grad()
def inference(args):
"""
"""
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
num_classes = MaskBaseDataset.num_classes # 18
model = load_model(args.save_dir, args.filename, args.model, num_classes, device).to(device)
model.eval()
img_root = os.path.join(args.data_dir, 'images')
info_path = os.path.join(args.data_dir, 'info.csv')
info = pd.read_csv(info_path)
img_paths = [os.path.join(img_root, img_id) for img_id in info.ImageID]
valid_transform_module = getattr(import_module("trans.trans"), args.validaug) # default: BaseAugmentation
valid_transform = valid_transform_module(
resize=args.resize,
)
dataset = TestDatasetA(img_paths, args.resize, transform=valid_transform)
loader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
num_workers=8,
shuffle=False,
pin_memory=use_cuda,
drop_last=False,
)
valid_transform_module2 = getattr(import_module("trans.trans"), 'A_resize_trans') # default: BaseAugmentation
valid_transform2 = valid_transform_module2(
resize=args.resize,
)
dataset2 = TestDatasetA(img_paths, args.resize, transform=valid_transform2)
loader2 = torch.utils.data.DataLoader(
dataset2,
batch_size=args.batch_size,
num_workers=8,
shuffle=False,
pin_memory=use_cuda,
drop_last=False,
)
print("Calculating inference results..")
preds = []
s = torch.nn.Softmax(dim=1)
with torch.no_grad():
for idx, (images1, images2) in enumerate(zip(loader, loader2)):
images1 = images1.to(device)
images2 = images2.to(device)
pred1 = model(images1)
pred1 = s(pred1)
pred2 = model(images2)
pred2 = s(pred2)
pred = torch.stack([pred1, pred2], dim=0)
pred = torch.sum(pred, dim=0)
pred = pred.argmax(dim=-1)
preds.extend(pred.cpu().numpy())
info['ans'] = preds
info.to_csv(os.path.join(args.save_dir, f'sTTA_output.csv'), index=False)
print(f'Inference Done!')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Data and model checkpoints directories
parser.add_argument('--batch_size', type=int, default=64, help='input batch size for validing (default: 128)')
parser.add_argument('--model', type=str, default='rexnet_200base', help='model type (default: BaseModel)')
parser.add_argument('--filename', type=str, default='best.pth', help='save file name (default: best.pth)')
parser.add_argument('--validaug', type=str, default='A_centercrop_trans', help='validation data augmentation type (default: A_centercrop_trans)')
parser.add_argument("--resize", nargs="+", type=list, default=[224, 224], help='resize size for image when training')
# Container environment
parser.add_argument('--data_dir', type=str, default=os.environ.get('SM_CHANNEL_EVAL', '/opt/ml/input/data/eval'))
parser.add_argument('--save_dir', type=str, default=os.environ.get('SM_CHANNEL_SAVE', './save'))
args = parser.parse_args()
inference(args)