-
Notifications
You must be signed in to change notification settings - Fork 6
/
teameval_kfold.py
378 lines (307 loc) · 15.3 KB
/
teameval_kfold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import argparse
import glob
import json
import multiprocessing
import os
import random
import re
from importlib import import_module
from pathlib import Path
from albumentations.augmentations.geometric.functional import resize
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from sklearn.model_selection import train_test_split
from torchvision import transforms
from datasets.dataset import MaskBaseDataset
from module.loss import create_criterion
from module.wandb import draw_result_chart_wandb, init_wandb, log_wandb, login_wandb, show_images_wandb
import timm
import torch.nn as nn
from sklearn.model_selection import StratifiedKFold
from torch.utils.data import Subset
from sklearn.metrics import f1_score
from tqdm import tqdm
import pandas as pd
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if use multi-GPU
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
random.seed(seed)
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
def grid_image(np_images, gts, preds, n=16, shuffle=False):
batch_size = np_images.shape[0]
assert n <= batch_size
choices = random.choices(range(batch_size), k=n) if shuffle else list(range(n))
figure = plt.figure(figsize=(12, 18 + 2)) # cautions: hardcoded, 이미지 크기에 따라 figsize 를 조정해야 할 수 있습니다. T.T
plt.subplots_adjust(top=0.8) # cautions: hardcoded, 이미지 크기에 따라 top 를 조정해야 할 수 있습니다. T.T
n_grid = np.ceil(n ** 0.5)
tasks = ["mask", "gender", "age"]
for idx, choice in enumerate(choices):
gt = gts[choice].item()
pred = preds[choice].item()
image = np_images[choice]
# title = f"gt: {gt}, pred: {pred}"
gt_decoded_labels = MaskBaseDataset.decode_multi_class(gt)
pred_decoded_labels = MaskBaseDataset.decode_multi_class(pred)
title = "\n".join([
f"{task} - gt: {gt_label}, pred: {pred_label}"
for gt_label, pred_label, task
in zip(gt_decoded_labels, pred_decoded_labels, tasks)
])
plt.subplot(n_grid, n_grid, idx + 1, title=title)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(image, cmap=plt.cm.binary)
return figure
def increment_path(path, exist_ok=False):
""" Automatically increment path, i.e. runs/exp --> runs/exp0, runs/exp1 etc.
Args:
path (str or pathlib.Path): f"{model_dir}/{args.name}".
exist_ok (bool): whether increment path (increment if False).
"""
path = Path(path)
if (path.exists() and exist_ok) or (not path.exists()):
return str(path)
else:
dirs = glob.glob(f"{path}*")
matches = [re.search(rf"%s(\d+)" % path.stem, d) for d in dirs]
i = [int(m.groups()[0]) for m in matches if m]
n = max(i) + 1 if i else 2
return f"{path}{n}"
def train(data_dir, model_dir, args):
seed_everything(args.seed)
save_dir = os.path.join(args.save_dir,args.name)
try:
if not os.path.exists(save_dir):
os.makedirs(save_dir)
except OSError:
print ('Error: Creating directory. ' + save_dir)
with open(os.path.join(save_dir, 'config.json'), 'w', encoding='utf-8') as f:
json.dump(vars(args), f, ensure_ascii=False, indent=4)
test_dir = args.eval_dir
submission = pd.read_csv(os.path.join(test_dir, 'info.csv'))
image_dir = os.path.join(test_dir, 'images')
image_paths = [os.path.join(image_dir, img_id) for img_id in submission.ImageID]
# -- settings
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
# -- dataset
dataset_module = getattr(import_module("datasets." + args.userdataset), args.dataset) # default: team
all_dataset = dataset_module(
data_path=data_dir,
train = 'ALL'
)
num_classes = all_dataset.num_classes
# -- train dataset
train_dataset = dataset_module(
data_path=data_dir,
train = 'train'
)
# -- augmentation
train_transform_module = getattr(import_module("trans." + args.usertrans), args.trainaug) # default: BaseAugmentation
train_transform = train_transform_module(
resize=args.resize,
)
valid_transform_module = getattr(import_module("trans." + args.usertrans), args.validaug) # default: BaseAugmentation
valid_transform = valid_transform_module(
resize=args.resize,
)
all_dataset.set_transform(train_transform)
# test_dataset.set_transform(train_transform)
skf = StratifiedKFold(n_splits=args.num_split, shuffle=True, random_state=25)
for fold, (train_ids, valid_ids) in enumerate(skf.split(train_dataset.df_csv, train_dataset.df_csv.gender_age_cls)):
# Print
print('--------------------------------')
print(f'FOLD {fold}')
print('--------------------------------')
# -- Image index
train_image_ids = sum([[x*7+i for i in range(7)] for x in train_ids],[])
valid_image_ids = sum([[y*7+i for i in range(7)] for y in valid_ids],[])
# -- Dataset
train_dataset = Subset(all_dataset,train_image_ids)
valid_dataset = Subset(all_dataset,valid_image_ids)
print(f'train length : {len(train_dataset)}')
print(f'valid length : {len(valid_dataset)}')
# -- DataLoader
train_loader = DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True
)
print(f'train length : {len(train_loader)}')
valid_loader = DataLoader(
valid_dataset,
batch_size=args.valid_batch_size,
shuffle=True,
drop_last=True
)
print(f'valid length : {len(valid_loader)}')
# -- model
model_module = getattr(import_module("models."+args.usermodel), args.model) # default: resnetbase
model = model_module(
num_classes=num_classes
).to(device)
# model = torch.nn.DataParallel(model)
# -- loss & metric
criterion = create_criterion(args.criterion) # default: cross_entropy
opt_module = getattr(import_module("torch.optim"), args.optimizer) # default: SGD
optimizer = opt_module(
filter(lambda p: p.requires_grad, model.parameters()),
lr=args.lr,
weight_decay=5e-4
)
scheduler = StepLR(optimizer, args.lr_decay_step, gamma=0.5)
counter = 0
best_val_acc = 0
best_val_loss = np.inf
for epoch in range(args.epochs):
print('*** Epoch {} ***'.format(epoch))
# Training
model.train()
running_loss, running_acc, running_f1 = 0.0, 0.0, 0.0
# Set Trans
all_dataset.set_transform(train_transform)
init_wandb(epoch, 'train', args, fold=fold)
for (inputs, labels) in tqdm(train_loader):
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
# forward
with torch.set_grad_enabled(True):
logits = model(inputs)
_, preds = torch.max(logits, 1)
loss = criterion(logits, labels)
loss.backward()
optimizer.step()
# statistics
loss_val = loss.item() * inputs.shape[0]
acc_val = torch.sum(preds == labels.data)
f1_val = f1_score(labels.data.cpu().numpy(), preds.cpu().numpy(), average = 'macro')
running_loss += loss_val
running_acc += acc_val
running_f1 += f1_val
log_wandb('train', acc_val/len(labels), f1_val, loss_val)
epoch_acc = running_acc/len(train_loader.dataset)
epoch_loss = running_loss/len(train_loader.dataset)
epoch_f1 = running_f1/len(train_loader)
print('{} Loss: {:.4f} Acc: {:.4f} F1-score: {:.4f}'.format('train', epoch_loss, epoch_acc, epoch_f1))
# Validation
model.eval()
valid_acc, valid_f1,valid_loss = 0.0, 0.0, 0.0
# Set Trans
all_dataset.set_transform(valid_transform)
init_wandb(epoch, 'valid', args, fold=fold)
for val_batch in tqdm(valid_loader):
inputs, labels = val_batch
inputs = inputs.to(device)
labels = labels.to(device)
with torch.set_grad_enabled(False):
logits = model(inputs)
_, preds = torch.max(logits, 1)
# statistics
acc_val = torch.sum(preds == labels.data)
loss_val = criterion(logits, labels).item()
f1_val = f1_score(labels.data.cpu().numpy(), preds.cpu().numpy(), average = 'macro')
valid_acc += acc_val
valid_loss += criterion(logits, labels).item()
valid_f1 += f1_val
log_wandb('valid', acc_val/len(labels), f1_val, loss_val)
valid_acc /= len(valid_loader.dataset)
valid_f1 /= len(valid_loader)
valid_loss /= len(valid_loader.dataset)
best_val_loss = min(best_val_loss,valid_loss)
if valid_acc > best_val_acc:
print("New best model for val accuracy!")
print(f"val_acc : {valid_acc}")
best_val_acc = valid_acc
counter = 0
torch.save(model.state_dict(), os.path.join(save_dir, f"[{fold}]_best.pth"))
else:
counter += 1
# patience 횟수 동안 성능 향상이 없을 경우 학습을 종료시킵니다.
if counter > args.patience:
print("Early Stopping...")
break
print('{} Acc: {:.4f} f1-score: {:.4f}\n'.format('valid', valid_acc, valid_f1))
<<<<<<< HEAD:kfold_train.py
# team_eval_pred
all_predictions = []
answers = []
for images, labels in tqdm(team_eval_loader):
with torch.no_grad():
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
all_predictions.extend(outputs.cpu().numpy())
answers.extend(labels.cpu().numpy())
team_eval_preds = [x+y for x,y in zip(team_eval_preds,all_predictions)]
team_eval_acc = np.round(torch.sum(torch.tensor(answers) == torch.tensor(np.argmax(team_eval_preds,axis=1)))/len(answers),4)
team_eval_f1 = np.round(f1_score(answers,np.argmax(team_eval_preds,axis=1),average="macro"),4)
log_wandb('team_eval', team_eval_acc, team_eval_f1)
draw_result_chart_wandb(np.argmax(team_eval_preds,axis=1))
show_images_wandb(images,labels,np.argmax(outputs.cpu().data.numpy(),axis=1))
# test_pred
all_predictions = []
for images in tqdm(test_loader):
with torch.no_grad():
images = images.to(device)
outputs = model(images)
all_predictions.extend(outputs.cpu().numpy())
test_preds = [x+y for x,y in zip(test_preds,all_predictions)]
# Check Result
print(f'Team eval accuracy : {team_eval_acc}, f1-score : {team_eval_f1}')
submission['ans'] = np.argmax(test_preds,axis = 1)
submission.to_csv('stratified.csv', index=False)
print('Done')
=======
>>>>>>> master:teameval_kfold.py
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Data and model checkpoints directories
parser.add_argument('--seed', type=int, default=25, help='random seed (default: 25)')
parser.add_argument('--epochs', type=int, default=1, help='number of epochs to train (default: 1)')
parser.add_argument('--dataset', type=str, default='teamDataset', help='dataset augmentation type (default: MaskBaseDataset)')
parser.add_argument('--trainaug', type=str, default='A_centercrop_trans', help='data augmentation type (default: BaseAugmentation)')
parser.add_argument('--validaug', type=str, default='A_centercrop_trans', help='data augmentation type (default: BaseAugmentation)')
parser.add_argument("--resize", nargs="+", type=list, default=[224, 224], help='resize size for image when training')
parser.add_argument('--batch_size', type=int, default=32, help='input batch size for training (default: 64)')
parser.add_argument('--valid_batch_size', type=int, default=32, help='input batch size for validing (default: 1000)')
parser.add_argument('--model', type=str, default='rexnet_200base', help='model type (default: resnetbase)')
parser.add_argument('--optimizer', type=str, default='Adam', help='optimizer type (default: SGD)')
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate (default: 1e-3)')
parser.add_argument('--val_ratio', type=float, default=0.2, help='ratio for validaton (default: 0.2)')
parser.add_argument('--criterion', type=str, default='cross_entropy', help='criterion type (default: cross_entropy)')
parser.add_argument('--lr_decay_step', type=int, default=20, help='learning rate scheduler deacy step (default: 20)')
parser.add_argument('--log_interval', type=int, default=20, help='how many batches to wait before logging training status')
parser.add_argument('--name', default='exp', help='model save at {SM_MODEL_DIR}/{name}')
parser.add_argument('--patience',type=int, default = 5, help = 'earlystopping rounds')
parser.add_argument('--num_split',type=int, default = 5, help = 'number of k-folds')
parser.add_argument('--userdataset', default='dataset', help='select user custom dataset')
parser.add_argument('--usermodel', default='model', help='select user custom model')
parser.add_argument('--usertrans', default='trans', help='select user custom transform')
# Container environment
parser.add_argument('--data_dir', type=str, default=os.environ.get('SM_CHANNEL_TRAIN', '/opt/ml/input/data/train'))
parser.add_argument('--eval_dir',type=str, default= os.environ.get('SM_CHANNEL_TRAIN', '/opt/ml/input/data/eval'))
parser.add_argument('--model_dir', type=str, default=os.environ.get('SM_MODEL_DIR', './model'))
parser.add_argument('--save_dir', type=str, default=os.environ.get('SM_SAVE_DIR', './save'))
# Wandb Env File Path
parser.add_argument('--dotenv_path', default='/opt/ml/image-classification-level1-25/wandb.env', help='input your dotenv path')
parser.add_argument('--wandb_entity', default='boostcamp-25', help='input your wandb entity')
parser.add_argument('--wandb_project', default='image-classification-level1-25', help='input your wandb project')
parser.add_argument('--wandb_unique_tag', default='tag_name', help='input your wandb unique tag')
args = parser.parse_args()
print(args)
data_dir = args.data_dir
model_dir = args.model_dir
login_wandb(args.dotenv_path)
train(data_dir, model_dir, args)