-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
84 lines (61 loc) · 2.06 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from ast import arguments
from email import parser
import numpy as np
import os
import PIL
import PIL.Image
import tensorflow as tf
import tensorflow_datasets as tfds
import argparse
import tensorflow_hub as hub
import keras
from tensorflow.keras import optimizers
print(tf.__version__)
DEFAULT_DIR="/home/bryan/Documents/GITHUB/PlantCV/data/mini_dataset"
batch_size = 10
img_height = 224
img_width = 224
parser=argparse.ArgumentParser()
parser.add_argument("--data-dir",default=DEFAULT_DIR)
args=parser.parse_args()
train_ds = tf.keras.utils.image_dataset_from_directory(
args.data_dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
val_ds = tf.keras.utils.image_dataset_from_directory(
args.data_dir,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
normalization_layer = tf.keras.layers.Rescaling(1./255)
train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y))
model = tf.keras.Sequential([
hub.KerasLayer("https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/classification/5",
trainable=True)])
model.build([None, img_height, img_width, 3]) # Batch input shape.
AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
optimizer=optimizers.Adam(lr=0.005)
model.compile(
optimizer=optimizer,
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
#Training step
checkpoint_path = "weights/cp.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,
save_weights_only=True,
verbose=1,
save_freq=1)
model.fit(
train_ds,
validation_data=val_ds,
epochs=3,callbacks=[cp_callback]
)