diff --git a/fedlearner/__init__.py b/fedlearner/__init__.py index ebb71845b..ce73456c1 100644 --- a/fedlearner/__init__.py +++ b/fedlearner/__init__.py @@ -20,3 +20,4 @@ from fedlearner import proxy from fedlearner import trainer from fedlearner import fedavg +from fedlearner import privacy diff --git a/fedlearner/privacy/__init__.py b/fedlearner/privacy/__init__.py new file mode 100644 index 000000000..8b1378917 --- /dev/null +++ b/fedlearner/privacy/__init__.py @@ -0,0 +1 @@ + diff --git a/fedlearner/privacy/splitnn/__init__.py b/fedlearner/privacy/splitnn/__init__.py new file mode 100644 index 000000000..8b1378917 --- /dev/null +++ b/fedlearner/privacy/splitnn/__init__.py @@ -0,0 +1 @@ + diff --git a/fedlearner/privacy/splitnn/discorloss.py b/fedlearner/privacy/splitnn/discorloss.py new file mode 100644 index 000000000..a47fa4205 --- /dev/null +++ b/fedlearner/privacy/splitnn/discorloss.py @@ -0,0 +1,61 @@ +import tensorflow as tf +import logging +import time + +# DisCorLoss论文详见:https://arxiv.org/abs/2203.01451 + +class DisCorLoss(tf.keras.losses.Loss): + def __init__(self, **kwargs): + super(DisCorLoss, self).__init__(**kwargs) + + def _pairwise_dist(self, A, B): + # squared norms of each row in A and B + na = tf.reduce_sum(tf.square(A), 1) + nb = tf.reduce_sum(tf.square(B), 1) + + # na as a row and nb as a column vectors + na = tf.reshape(na, [-1, 1]) + nb = tf.reshape(nb, [1, -1]) + + # return pairwise euclidead difference matrix + D = tf.sqrt(tf.maximum(na - 2 * tf.matmul(A, B, False, True) + nb + 1e-20, + 0.0)) + return D + + def tf_distance_cor(self, embeddings, labels, debug=False): + start = time.time() + + embeddings = tf.debugging.check_numerics(embeddings, "embeddings contains nan/inf") + labels = tf.debugging.check_numerics(labels, "labels contains nan/inf") + labels = tf.expand_dims(labels, 1) + + n = tf.cast(tf.shape(embeddings)[0], tf.float32) + a = self._pairwise_dist(embeddings, embeddings) + b = self._pairwise_dist(labels, labels) + + # X = x - x的行均值 - x的列均值 + x的总均值 + A = a - tf.reduce_mean(a, + axis=1) - tf.expand_dims(tf.reduce_mean(a, + axis=0), + axis=1) + tf.reduce_mean(a) + B = b - tf.reduce_mean(b, + axis=1) - tf.expand_dims(tf.reduce_mean(b, + axis=0), + axis=1) + tf.reduce_mean(b) + # 计算协方差 + dCovXY = tf.sqrt(tf.abs(tf.reduce_sum(A * B) / (n ** 2))) + # 计算方差 + dVarXX = tf.sqrt(tf.abs(tf.reduce_sum(A * A) / (n ** 2))) + dVarYY = tf.sqrt(tf.abs(tf.reduce_sum(B * B) / (n ** 2))) + # 计算相关性 + dCorXY = dCovXY / tf.sqrt(dVarXX * dVarYY) + end = time.time() + if debug: + print(("tf distance cov: {} and cor: {}, dVarXX: {}, " + "dVarYY:{} uses: {}").format( + dCovXY, dCorXY, + dVarXX, dVarYY, + end - start)) + return dCorXY + + diff --git a/fedlearner/privacy/splitnn/emb_attack.py b/fedlearner/privacy/splitnn/emb_attack.py new file mode 100644 index 000000000..de5b7b669 --- /dev/null +++ b/fedlearner/privacy/splitnn/emb_attack.py @@ -0,0 +1,23 @@ +import tensorflow.compat.v1 as tf + +# Emb Attack见论文:https://arxiv.org/pdf/2203.01451.pdf + +def get_emb_pred(emb): + mean_emb = tf.reduce_mean(emb, axis=0) + # 规范化处理emb + mean_reduced_emb = emb - mean_emb + # 对规范化矩阵做奇异值分解 + s, u, v = tf.linalg.svd(mean_reduced_emb) + # 最大奇异值对应的右奇异向量与矩阵做内积 + top_singular_vector = tf.transpose(v)[0] + pred = tf.linalg.matvec(mean_reduced_emb, top_singular_vector) + # 内积之后的结果可以分为两个簇 + pred = tf.math.sigmoid(pred) + return pred + +def emb_attack_auc(emb, y): + emb_pred = get_emb_pred(emb) + emb_pred = tf.reshape(emb_pred, y.shape) + # 计算emb attack auc + _, emb_auc = tf.metrics.auc(y, emb_pred) + return emb_auc diff --git a/fedlearner/privacy/splitnn/fedpass.py b/fedlearner/privacy/splitnn/fedpass.py new file mode 100644 index 000000000..bd06034da --- /dev/null +++ b/fedlearner/privacy/splitnn/fedpass.py @@ -0,0 +1,37 @@ +import tensorflow.compat.v1 as tf + + +def scale_transform(s_scalekey): + """ 对密钥应用变换并计算缩放因子 """ + _, s_c = tf.shape(s_scalekey)[0], tf.shape(s_scalekey)[1] + s_scale = tf.reduce_mean(s_scalekey, axis=0) + s_scale = tf.reshape(s_scale, [1, s_c]) + return s_scale + +def fedpass(hidden_feature, x, mean, scale): + # hidden_feature: 中间层维度 + # x: 输入数据 + # mean, scale: 随机密钥的均值和方差 + + # 定义层 + dense = tf.keras.layers.Dense(hidden_feature, use_bias=False, activation=None) + encode = tf.keras.layers.Dense(hidden_feature // 4, use_bias=False, activation=None) + decode = tf.keras.layers.Dense(hidden_feature, use_bias=False, activation=None) + + # 初始化随机变量 + newshape = tf.shape(x) + skey = tf.random.normal(newshape, mean=mean, stddev=scale, dtype=x.dtype) + bkey = tf.random.normal(newshape, mean=mean, stddev=scale, dtype=x.dtype) + # 应用层和计算缩放因子 + s_scalekey = dense(skey) + b_scalekey = dense(bkey) + + + s_scale = scale_transform(s_scalekey) + b_scale = scale_transform(b_scalekey) + + s_scale = tf.reshape(decode(tf.nn.leaky_relu(encode(s_scale))), [1, hidden_feature]) + b_scale = tf.reshape(decode(tf.nn.leaky_relu(encode(b_scale))), [1, hidden_feature]) + x = dense(x) + x = tf.tanh(s_scale) * x + tf.tanh(b_scale) + return x \ No newline at end of file diff --git a/fedlearner/privacy/splitnn/marvell.py b/fedlearner/privacy/splitnn/marvell.py new file mode 100644 index 000000000..e40c53ac1 --- /dev/null +++ b/fedlearner/privacy/splitnn/marvell.py @@ -0,0 +1,660 @@ +import math +import random +import numpy as np +import tensorflow.compat.v1 as tf +import logging +import time +import sys + +#论文见:https://arxiv.org/pdf/2102.08504.pdf + +sys.setrecursionlimit(100000) + +# OBJECTIVE_EPSILON为优化过程的结束条件 +OBJECTIVE_EPSILON = np.float32(1e-16) + +# CONVEX_EPSILON为二值优化问题的结束条件 +CONVEX_EPSILON = np.float32(1e-20) + +# NUM_CANDIDATE为优化过程候选数量 +NUM_CANDIDATE = 1 + +# ZERO_REPLACE用来应对除零错误 +# 为了应对除零问题,将所有除数替换成了div_{x} +ZERO_REPLACE = 1e-3 + +@tf.function +def KL_gradient_perturb(g, batch_y, sumKL_threshold=0.25): + # 算法流程: + # 1.根据gradient对label=0和label=1的gradient的分布进行统计:得到均值和方差 + # 2.调用compute_lambdas解决 四变量优化 问题:得到四个变量lambda + # 3.根据噪声添加公式计算噪声:得到noise + # 4.添加噪声并返回 + + # Step 1: 分布统计 + uv_choice = "uv" + init_scale = 1.0 + + p_frac = 'pos_frac' + dynamic = True + error_prob_lower_bound = None + + if dynamic and (error_prob_lower_bound is not None): + sumKL_threshold = (2 - 4 * error_prob_lower_bound) ** 2 + # elif dynamic: + # print('using sumKL_threshold', sumKL_threshold) + + y = tf.reshape(tf.cast(batch_y, dtype=tf.float32), [-1, 1]) + # 正例的gradient + pos_g = tf.boolean_mask(g, tf.tile(tf.cast(y, dtype=tf.int32), [1, tf.shape(g)[1]])) + pos_g = tf.reshape(pos_g, [-1, tf.shape(g)[1]]) + + # 正例gradient的均值和方差 + pos_g_mean = tf.math.reduce_mean(pos_g, axis=0, keepdims=True) # shape [1, d] + pos_coordinate_var = tf.reduce_mean(tf.math.square(pos_g - pos_g_mean), axis=0) # use broadcast + + # 负例的gradient + neg_g = tf.boolean_mask(g, tf.tile(1 - tf.cast(y, dtype=tf.int32), [1, tf.shape(g)[1]])) + neg_g = tf.reshape(neg_g, [-1, tf.shape(g)[1]]) + + # 负例gradient的均值和方差 + neg_g_mean = tf.math.reduce_mean(neg_g, axis=0, keepdims=True) # shape [1, d] + neg_coordinate_var = tf.reduce_mean(tf.math.square(neg_g - neg_g_mean), axis=0) + + avg_pos_coordinate_var = tf.reduce_mean(pos_coordinate_var) + avg_neg_coordinate_var = tf.reduce_mean(neg_coordinate_var) + + if tf.math.is_nan(avg_pos_coordinate_var) or tf.math.is_nan( + avg_neg_coordinate_var): + return g + + # 对应论文 \delta g + g_diff = pos_g_mean - neg_g_mean + # 对应论文 \delta g的二范数 + g_diff_norm = tf.norm(tensor=g_diff) + + if tf.math.is_nan(g_diff_norm): + return g + + if uv_choice == 'uv': + u = avg_neg_coordinate_var + v = avg_pos_coordinate_var + elif uv_choice == 'same': + u = (avg_neg_coordinate_var + avg_pos_coordinate_var) / 2.0 + v = (avg_neg_coordinate_var + avg_pos_coordinate_var) / 2.0 + elif uv_choice == 'zero': + u, v = 0.0, 0.0 + + # d是gradient的维度 + d = tf.cast(tf.shape(g)[1], dtype=tf.float32) + + # p是标签y中正例的占比 + if p_frac == 'pos_frac': + p = tf.math.reduce_mean(y) + else: + p = float(p_frac) + + scale = init_scale + g_norm_square = g_diff_norm ** 2 + + # debug用 + def print_tensor(pos_g_mean, neg_g_mean, g_diff): + logging.info("gradient pos_g_mean: {}, neg_g_mean: {}".format(np.mean(pos_g_mean), np.mean(neg_g_mean))) + logging.info("gradient pos_g_max: {}, neg_g_max: {}".format(np.amax(pos_g_mean), np.amax(neg_g_mean))) + logging.info("gradient pos_g_min: {}, neg_g_min: {}".format(np.amin(pos_g_mean), np.amin(neg_g_mean))) + logging.info( + "gradient pos_g_norm: {}, neg_g_norm: {}".format(np.linalg.norm(pos_g_mean), np.linalg.norm(neg_g_mean))) + logging.info("gradient g_diff_mean: {}, g_diff_min: {}, g_diff_max: {}, g_diff_norm: {}".format(np.mean(g_diff), + np.amin(g_diff), + np.amax(g_diff), + np.linalg.norm( + g_diff))) + # Step 2: 计算论文中4个lambda + def compute_lambdas(u, v, scale, d, g_norm_square, p, sumKL_threshold, pos_g_mean, neg_g_mean, g_diff): + lam10, lam20, lam11, lam21 = None, None, None, None + start = time.time() + while True: + # P 对应论文中“Additional details of Marvell.”所讲述的power constarint hyperparameter + P = scale * g_norm_square + lam10, lam20, lam11, lam21, sumKL = solve_isotropic_covariance(u=u, + v=v, + d=d, + g_norm_square=g_norm_square, + p=p, + P=P, + lam10_init=lam10, + lam20_init=lam20, + lam11_init=lam11, + lam21_init=lam21) + # logging.info('scale: {}, sumKL: {}, P:{}, type_scale: {}, type_sumKL: {}, type_P:{}'.format(scale, sumKL, P, type(scale), type(sumKL), type(P))) + if not dynamic or sumKL <= sumKL_threshold: + break + scale *= np.float32(1.5) # loosen the power constraint + # logging.info('solve_isotropic_covariance solving time: {}'.format(time.time() - start)) + return lam10, lam20, lam11, lam21, sumKL + + + lam10, lam20, lam11, lam21, sumKL = tf.py_function(compute_lambdas, + [u, v, scale, d, g_norm_square, p, sumKL_threshold, pos_g_mean, + neg_g_mean, g_diff], + [tf.float32, tf.float32, tf.float32, tf.float32, tf.float32]) + lam10, lam20, lam11, lam21, sumKL = tf.reshape(lam10, shape=[1]), tf.reshape(lam20, shape=[1]), \ + tf.reshape(lam11,shape=[1]), tf.reshape(lam21, shape=[1]), \ + tf.reshape(sumKL, shape=[1]) + + perturbed_g = g + y_float = tf.cast(y, dtype=tf.float32) + + div_g = g_diff_norm + if div_g == 0.: + div_g = ZERO_REPLACE + + # Step 3: 计算噪声 + # 四个noise的公式详见论文Theorem 2 + # noise_1和noise_2给 label=1 的gradient添加噪声,对应论文中 \Sigma 1 + # noise_1中采样标准高斯噪声x,保留对应 label=1 的部分,扩大 sqrt( (lambda11 - lmabda21) / ||\Delta g||_2^2 ) * ||\Delta g||_2,对应\Sigma 1的前一个加项 + noise_1 = tf.reshape(tf.multiply(x=tf.random.normal(shape=tf.shape(y)), y=y_float), shape=(-1, 1)) * g_diff * ( + tf.math.sqrt(tf.math.abs(lam11 - lam21)) / div_g) + noise_1 = tf.debugging.check_numerics(noise_1, "noise_1 ERROR", name="noise_1_debugging") + + # noise_2对应\Sigma 1的后一个加项 + noise_2 = tf.random.normal(shape=tf.shape(g)) * tf.reshape(y_float, shape=(-1, 1)) * tf.math.sqrt( + tf.math.maximum(lam21, 0.0)) + noise_2 = tf.debugging.check_numerics(noise_2, "noise_2 ERROR", name="noise_2_debugging") + + # noise_3和noise_4给 label=2 的gradient添加噪声,对应论文中的 \Sigma 0 + # noise_3对应\Sigma 0的前一个加项(与noise_1类似) + noise_3 = tf.reshape(tf.multiply(x=tf.random.normal(shape=tf.shape(y)), y=1 - y_float), shape=(-1, 1)) * g_diff * ( + tf.math.sqrt(tf.math.abs(lam10 - lam20)) / div_g) + noise_3 = tf.debugging.check_numerics(noise_3, "noise_3 ERROR", name="noise_3_debugging") + + # noise_4对应\Sigma 0的后一个加项 + noise_4 = tf.random.normal(shape=tf.shape(g)) * tf.reshape(1 - y_float, shape=(-1, 1)) * tf.math.sqrt( + tf.math.maximum(lam20, 0.0)) + noise_4 = tf.debugging.check_numerics(noise_4, "noise_4 ERROR", name="noise_4_debugging") + + # Step 4 : 添加噪声并返回 + perturbed_g += (noise_1 + noise_2 + noise_3 + noise_4) + perturbed_g = tf.debugging.check_numerics(perturbed_g, "perturbed_g ERROR", name="perturbed_g_debugging") + + return perturbed_g + + +# solver +def symKL_objective(lam10, lam20, lam11, lam21, u, v, d, g_norm_square): + # 计算优化的目标函数 + div1 = lam21 + v + div2 = lam20 + u + div3 = lam11 + v + div4 = lam10 + u + if div1 == 0.: + div1 = ZERO_REPLACE + if div2 == 0.: + div2 = ZERO_REPLACE + if div3 == 0.: + div3 = ZERO_REPLACE + if div4 == 0.: + div4 = ZERO_REPLACE + objective = np.float32((d - np.float32(1)) * (lam20 + u) / (div1) \ + + (d - np.float32(1)) * (lam21 + v) / (div2) \ + + (lam10 + u + g_norm_square) / (div3) \ + + (lam11 + v + g_norm_square) / (div4)) + + # logging.info("symKL_objective, objective: {}, type: {}".format(objective, type(objective))) + return objective + + +def symKL_objective_zero_uv(lam10, lam11, g_norm_square): + # 计算优化的目标函数(u, v均为0) + if lam11 == 0.: + lam11 = ZERO_REPLACE + if lam10 == 0.: + lam10 = ZERO_REPLACE + objective = np.float32((lam10 + g_norm_square) / lam11 \ + + (lam11 + g_norm_square) / lam10) + # logging.info("symKL_objective_zero_uv, objective: {}, type: {}".format(objective, type(objective))) + return objective + + +def solve_isotropic_covariance(u, v, d, g_norm_square, p, P, + lam10_init=None, lam20_init=None, + lam11_init=None, lam21_init=None): + """ return the solution to the optimization problem + Args: + u ([type]): [the coordinate variance of the negative examples] + v ([type]): [the coordinate variance of the positive examples] + d ([type]): [the dimension of activation to protect] + g_norm_square ([type]): [squared 2-norm of g_0 - g_1, i.e. \|g^{(0)} - g^{(1)}\|_2^2] + P ([type]): [the power constraint value] + """ + if u == np.float32(0.0) and v == np.float32(0.0): + return solve_zero_uv(g_norm_square=g_norm_square, p=p, P=P) + + # logging.info("solve_isotropic_covariance, uv!=0") + ordering = [0, 1, 2] + random.shuffle(x=ordering) + + solutions = [] + div1 = np.float32(1.0) - p + if div1 == 0.: + div1 = ZERO_REPLACE + div2 = d + if div2 == 0.: + div2 = ZERO_REPLACE + div3 = p + if div3 == 0.: + div3 = ZERO_REPLACE + + # lambda21=0,对剩下的参数随机赋值(NUM_CANDIDATE决定候选的 lambda解 的数量) + if u <= v: + # logging.info("solve_isotropic_covariance, u<=v") + for i in range(NUM_CANDIDATE): + if i % 3 == ordering[0]: + if lam20_init: # if we pass an initialization + lam20 = lam20_init + else: + lam20 = np.float32(random.random() * P / div1 / div2) + lam10, lam11 = None, None + elif i % 3 == ordering[1]: + if lam11_init: + lam11 = lam11_init + else: + lam11 = np.float32(random.random() * P / div3) + lam10, lam20 = None, None + else: + if lam10_init: + lam10 = lam10_init + else: + lam10 = np.float32(random.random() * P / div1) + lam11, lam20 = None, None + # logging.info("solve_isotropic_covariance, u<=v_iter_{}, lam10: {}, lam20: {}, lam11: {}, type_lam10: {}, type_lam20: {}, type_lam11: {}".format(i, lam10, lam20, lam11, type(lam10), type(lam20), type(lam11))) + solutions.append( + solve_small_neg(u=u, v=v, d=d, g_norm_square=g_norm_square, p=p, P=P, lam10=lam10, lam11=lam11, + lam20=lam20)) + # lambda20=0,对剩下的参数随机赋值(NUM_CANDIDATE决定候选的 lambda解 的数量) + else: + # logging.info("solve_isotropic_covariance, u>v") + for i in range(NUM_CANDIDATE): + if i % 3 == ordering[0]: + if lam21_init: + lam21 = lam21_init + else: + lam21 = np.float32(random.random() * P / div3 / div2) + lam10, lam11 = None, None + elif i % 3 == ordering[1]: + if lam11_init: + lam11 = lam11_init + else: + lam11 = np.float32(random.random() * P / div3) + lam10, lam21 = None, None + else: + if lam10_init: + lam10 = lam10_init + else: + lam10 = np.float32(random.random() * P / div1) + lam11, lam21 = None, None + # logging.info("solve_isotropic_covariance, u>v_iter_{}, lam10: {}, lam21: {}, lam11: {}, type_lam10: {}, type_lam21: {}, type_lam11: {}".format(i, lam10, lam21, lam11, type(lam10), type(lam21), type(lam11))) + solutions.append( + solve_small_pos(u=u, v=v, d=d, g_norm_square=g_norm_square, p=p, P=P, lam10=lam10, lam11=lam11, + lam21=lam21)) + + # logging.info("solve_isotropic_covariance, solutions: {}, len: {}".format(solutions, len(solutions))) + lam10, lam20, lam11, lam21, objective = min(solutions, key=lambda x: x[-1]) + # logging.info("solve_isotropic_covariance, lam10: {}, lam20: {}, lam21: {}, lam11: {}, type_lam10: {}, type_lam21: {}, type_lam11: {}, type_lam20: {}".format(lam10, lam20, lam21, lam11, type(lam10), type(lam21), type(lam11), type(lam20))) + + return (lam10, lam20, lam11, lam21, objective) + + +def solve_zero_uv(g_norm_square, p, P): + # 特殊情况:当u, v=0 + C = P + div1 = C + p * g_norm_square + if div1 == 0.: + div1 = ZERO_REPLACE + E = np.float32(math.sqrt((C + (np.float32(1.0) - p) * g_norm_square) / div1)) + div2 = p + if div2 == 0.: + div2 = ZERO_REPLACE + div3 = E + (np.float32(1.0) - p) / div2 + if div3 == 0.: + div3 = ZERO_REPLACE + tau = np.float32(max((P / div2) / div3, np.float32(0.0))) + # logging.info("solve_zero_uv, C: {}, E: {}, tau: {}, type_C: {}, type_E: {}, type_tau: {}".format(C, E, tau, type(C), type(E), type(tau))) + div4 = np.float32(1.0) - p + if div4 == 0.: + div4 = ZERO_REPLACE + if 0 <= tau and tau <= P / div4: + lam10 = tau + lam11 = np.float32(max(P / div2 - (np.float32(1.0) - p) * tau / div2, np.float32(0.0))) + # logging.info("solve_zero_uv, branch_1, lam10: {}, lam11: {}, type_lam10: {}, type_lam11:{}".format(lam10, lam11, type(lam10), type(lam11))) + else: + lam10_case1, lam11_case1 = np.float32(0.0), max(P / div2, np.float32(0.0)) + lam10_case2, lam11_case2 = np.float32(max(P / div4, np.float32(0.0))), np.float32(0.0) + objective1 = symKL_objective_zero_uv(lam10=lam10_case1, lam11=lam11_case1, + g_norm_square=g_norm_square) + objective2 = symKL_objective_zero_uv(lam10=lam10_case2, lam11=lam11_case2, + g_norm_square=g_norm_square) + if objective1 < objective2: + lam10, lam11 = lam10_case1, lam11_case1 + else: + lam10, lam11 = lam10_case2, lam11_case2 + + # logging.info("solve_zero_uv, branch_2, lam10: {}, lam11: {}, type_lam10: {}, type_lam11:{}".format(lam10, lam11, type(lam10), type(lam11))) + + objective = symKL_objective_zero_uv(lam10=lam10, lam11=lam11, g_norm_square=g_norm_square) + # logging.info("solve_zero_uv, objective {}, type: {}".format(objective, type(objective))) + + # here we subtract d = 1 because the distribution is essentially one-dimensional + return (lam10, np.float32(0.0), lam11, np.float32(0.0), np.float32(np.float32(0.5) * objective - np.float32(1.0))) + + +def prime1(x, d, v, lam11, u, g_norm_square, D): + div11 = v + if div11 == 0.: + div11 = ZERO_REPLACE + div12 = lam11 + v + if div12 == 0.: + div12 = ZERO_REPLACE + div13 = x + u + if div13 == 0.: + div13 = ZERO_REPLACE + div14 = (D - (d - np.float32(1.0)) * x + u) + if div14 == 0.: + div14 = ZERO_REPLACE + return (d - np.float32(1.0)) / div11 - (d - np.float32(1.0)) / div12 - ( + d - np.float32(1.0)) / div13 * (v / div13) + (lam11 + v + g_norm_square) / div14 * ( + (d - np.float32(1.0)) / div14) + + +def prime2(x, d, v, p, lam10, u, g_norm_square, D): + div21 = v + if div21 == 0.: + div21 = ZERO_REPLACE + div22 = lam10 + u + if div22 == 0.: + div22 = ZERO_REPLACE + div23 = p + if div23 == 0.: + div23 = ZERO_REPLACE + div24 = x + u + if div24 == 0.: + div24 = ZERO_REPLACE + div25 = (D / div23 - (np.float32(1.0) - p) * (d - np.float32(1.0)) * x / div23 + v) + if div25 == 0.: + div25 = ZERO_REPLACE + div26 = (D / div23 - (1 - p) * (d - 1) * x / div23 + v) + if div26 == 0.: + div26 = ZERO_REPLACE + return (d - np.float32(1.0)) / div21 - (np.float32(1.0) - p) * (d - np.float32(1.0)) / div22 / div23 - ( + d - np.float32(1.0)) / div24 * (v / div24) + ( + lam10 + u + g_norm_square) / div25 * (1 - p) * (d - 1) / div23 / div26 + +def solve_small_neg(u, v, d, g_norm_square, p, P, lam10=None, lam20=None, lam11=None): + """[When u < v] + """ + # 优化过程:三个参数,轮流固定其中一个,另两个形成一个线性优化问题,求解另两个参数最优解 + # 结束条件:最后一轮的目标函数和倒数第四轮的目标函数的差值在一定范围内 + # some intialization to start the alternating optimization + LAM21 = np.float32(0.0) + i = 0 + objective_value_list = [] + + if lam20: + ordering = [0, 1, 2] + elif lam11: + ordering = [1, 0, 2] + else: + ordering = [1, 2, 0] + + while True: + if i % 3 == ordering[0]: # fix lam20 + D = np.float32(P - (np.float32(1.0) - p) * (d - np.float32(1.0)) * lam20) + C = np.float32(D + p * v + (np.float32(1.0) - p) * u) + + div1 = C + p * g_norm_square + if div1 == 0.: + div1 = ZERO_REPLACE + E = np.float32(math.sqrt((C + (np.float32(1.0) - p) * g_norm_square) / div1)) + + div2 = p + if div2 == 0.: + div2 = ZERO_REPLACE + + div_x = (E + (np.float32(1.0) - p) / div2) + if div_x == 0.: + div_x = ZERO_REPLACE + tau = np.float32(max((D / div2 + v - E * u) / div_x, np.float32(0.0))) + div3 = np.float32(1.0) - p + if div3 == 0.: + div3 = ZERO_REPLACE + + if lam20 <= tau and tau <= np.float32(P / div3 - (d - np.float32(1.0)) * lam20): + lam10 = tau + lam11 = np.float32(max(D / div2 - (np.float32(1.0) - p) * tau / div2, np.float32(0.0))) + else: + lam10_case1, lam11_case1 = lam20, np.float32( + max(P / div2 - (np.float32(1.0) - p) * d * lam20 / div2, np.float32(0.0))) + lam10_case2, lam11_case2 = np.float32( + max(P / div3 - (d - np.float32(1.0)) * lam20, np.float32(0.0))), np.float32(0.0) + objective1 = symKL_objective(lam10=lam10_case1, lam20=lam20, lam11=lam11_case1, lam21=LAM21, + u=u, v=v, d=d, g_norm_square=g_norm_square) + objective2 = symKL_objective(lam10=lam10_case2, lam20=lam20, lam11=lam11_case2, lam21=LAM21, + u=u, v=v, d=d, g_norm_square=g_norm_square) + if objective1 < objective2: + lam10, lam11 = lam10_case1, lam11_case1 + else: + lam10, lam11 = lam10_case2, lam11_case2 + + elif i % 3 == ordering[1]: # fix lam11 + div1 = np.float32(1.0) - p + if div1 == 0.: + div1 = ZERO_REPLACE + D = np.float32(max((P - p * lam11) / div1, np.float32(0.0))) + f = lambda x: symKL_objective(lam10=D - (d - np.float32(1.0)) * x, lam20=x, lam11=lam11, lam21=LAM21, + u=u, v=v, d=d, g_norm_square=g_norm_square) + + f_prime = lambda x: prime1(x=x, d=d, v=v, lam11=lam11, u=u, g_norm_square=g_norm_square, D=D) + + div2 = d + if div2 == 0.: + div2 = ZERO_REPLACE + lam20 = convex_min_1d(xl=np.float32(0.0), xr=D / div2, f=f, f_prime=f_prime) + lam10 = np.float32(max(D - (d - np.float32(1.0)) * lam20, np.float32(0.0))) + + else: # fix lam10 + D = np.float32( + max(P - (np.float32(1.0) - p) * lam10, np.float32(0.0))) # avoid negative due to numerical error + + div1 = p + if div1 == 0.: + div1 = ZERO_REPLACE + f = lambda x: symKL_objective(lam10=lam10, lam20=x, + lam11=D / div1 - (np.float32(1.0) - p) * (d - np.float32(1.0)) * x / div1, + lam21=LAM21, + u=u, v=v, d=d, g_norm_square=g_norm_square) + + f_prime = lambda x: prime2(x=x, d=d, v=v, p=p, lam10=lam10, u=u, g_norm_square=g_norm_square, D=D) + + div2 = (np.float32(1.0) - p) * (d - np.float32(1.0)) + if div2 == 0.: + div2 = ZERO_REPLACE + lam20 = convex_min_1d(xl=np.float32(0.0), + xr=min(D / div2, lam10), f=f, + f_prime=f_prime) + lam11 = np.float32(max(D / div1 - (np.float32(1.0) - p) * (d - np.float32(1.0)) * lam20 / div1, np.float32(0.0))) + + # if lam10 <0 or lam20 < 0 or lam11 <0 or LAM21 <0: # check to make sure no negative values + # assert False, i + + objective_value_list.append(symKL_objective(lam10=lam10, lam20=lam20, lam11=lam11, lam21=LAM21, + u=u, v=v, d=d, g_norm_square=g_norm_square)) + # logging.info("solve_small_neg, iter: {}, objective_value_list[-1]: {}".format(i, objective_value_list[-1])) + if (i >= 3 and objective_value_list[-4] - objective_value_list[-1] < OBJECTIVE_EPSILON) or i >= 100: + # logging.info("solve_small_neg, iter: {}, terminated".format(i)) + return (lam10, lam20, lam11, LAM21, np.float32(0.5) * objective_value_list[-1] - d) + + i += 1 + + +def prime3(x, d, u, lam11, v, p, g_norm_square, D): + div31 = u + if div31 == 0.: + div31 = ZERO_REPLACE + div32 = lam11 + v + if div32 == 0.: + div32 = ZERO_REPLACE + div33 = (np.float32(1.0) - p) + if div33 == 0.: + div33 = ZERO_REPLACE + div34 = x + v + if div34 == 0.: + div34 = ZERO_REPLACE + div35 = (D - p * (d - np.float32(1.0)) * x) / div33 + u + if div35 == 0.: + div35 = ZERO_REPLACE + return (d - np.float32(1.0)) / div31 - p * (d - np.float32(1.0)) / div32 / div33 - (d - 1) / div34 * (u / div34) \ + + (lam11 + v + g_norm_square) / div35 * p * (d - np.float32(1.0)) / div33 / div35 + + +def prime4(x, d, u, lam10, v, g_norm_square, D): + div41 = u + if div41 == 0.: + div41 = ZERO_REPLACE + div42 = lam10 + u + if div42 == 0.: + div42 = ZERO_REPLACE + div43 = x + v + if div43 == 0.: + div43 = ZERO_REPLACE + div44 = (D - (d - np.float32(1.0)) * x + v) + if div44 == 0.: + div44 = ZERO_REPLACE + return (d - np.float32(1.0)) / div41 - (d - np.float32(1.0)) / div42 - ( + d - np.float32(1.0)) / div43 * (u / div43) + (lam10 + u + g_norm_square) / div44 * (d - np.float32(1.0)) / div44 + + +def solve_small_pos(u, v, d, g_norm_square, p, P, lam10=None, lam11=None, lam21=None): + """[When u > v] lam20 = 0.0 and will not change throughout the optimization + """ + # 优化过程:三个参数,轮流固定其中一个,另两个形成一个线性优化问题,求解另两个参数最优解 + # some intialization to start the alternating optimization + LAM20 = np.float32(0.0) + i = 0 + objective_value_list = [] + if lam21: + ordering = [0, 1, 2] + elif lam11: + ordering = [1, 0, 2] + else: + ordering = [1, 2, 0] + while True: + if i % 3 == ordering[0]: # fix lam21 + D = np.float32(P - p * (d - np.float32(1.0)) * lam21) + C = np.float32(D + p * v + (np.float32(1.0) - p) * u) + + div1 = (C + p * g_norm_square) + if div1 == 0.: + div1 = ZERO_REPLACE + E = np.float32(math.sqrt((C + (np.float32(1.0) - p) * g_norm_square) / div1)) + div2 = p + if div2 == 0.: + div2 = ZERO_REPLACE + div3 = (E + (np.float32(1.0) - p) / div2) + if div3 == 0.: + div3 = ZERO_REPLACE + tau = np.float32(max((D / div2 + v - E * u) / div3, np.float32(0.0))) + div4 = (np.float32(1.0) - p) + if div4 == 0.: + div4 = ZERO_REPLACE + if np.float32(0.0) <= tau and tau <= (P - p * d * lam21) / div4: + lam10 = tau + lam11 = np.float32(max(D / div2 - (np.float32(1.0) - p) * tau / div2, np.float32(0.0))) + else: + lam10_case1, lam11_case1 = np.float32(0), np.float32( + max(P / div2 - (d - np.float32(1.0)) * lam21, np.float32(0.0))) + lam10_case2, lam11_case2 = np.float32( + max((P - p * d * lam21) / div4, np.float32(0.0))), lam21 + objective1 = symKL_objective(lam10=lam10_case1, lam20=LAM20, lam11=lam11_case1, lam21=lam21, + u=u, v=v, d=d, g_norm_square=g_norm_square) + objective2 = symKL_objective(lam10=lam10_case2, lam20=LAM20, lam11=lam11_case2, lam21=lam21, + u=u, v=v, d=d, g_norm_square=g_norm_square) + if objective1 < objective2: + lam10, lam11 = lam10_case1, lam11_case1 + else: + lam10, lam11 = lam10_case2, lam11_case2 + # logging.info("solve_small_pos, branch: 0, lam10: {}, lam11: {}".format(lam10, lam11)) + elif i % 3 == ordering[1]: # fix lam11 + D = np.float32(max(P - p * lam11, np.float32(0.0))) + div1 = np.float32(1.0) - p + if div1 == 0.: + div1 = ZERO_REPLACE + f = lambda x: symKL_objective(lam10=(D - p * (d - 1) * x) / div1, lam20=LAM20, lam11=lam11, + lam21=x, + u=u, v=v, d=d, g_norm_square=g_norm_square) + + f_prime = lambda x: prime3(x=x, d=d, u=v, lam11=lam11, v=v, p=p, g_norm_square=g_norm_square, D=D) + + div2 = p + if div2 == 0.: + div2 = ZERO_REPLACE + div3 = d - np.float32(1.0) + if div3 == 0.: + div3 = ZERO_REPLACE + lam21 = convex_min_1d(xl=np.float32(0.0), xr=min(D / div2 / div3, lam11), f=f, + f_prime=f_prime) + lam10 = np.float32(max((D - p * (d - 1) * lam21) / div1, np.float32(0.0))) + # logging.info("solve_small_pos, branch: 1, lam10: {}, lam21: {}".format(lam10, lam21)) + + else: # fix lam10 + div1 = p + if div1 == 0.: + div1 = ZERO_REPLACE + D = np.float32(max((P - (1 - p) * lam10) / div1, np.float32(0.0))) + f = lambda x: symKL_objective(lam10=lam10, lam20=LAM20, lam11=D - (d - np.float32(1.0)) * x, lam21=x, + u=u, v=v, d=d, g_norm_square=g_norm_square) + + f_prime = lambda x: prime4(x=x, d=d, u=u, lam10=lam10, v=v, g_norm_square=g_norm_square, D=D) + + div2 = d + if div2 == 0.: + div2 = ZERO_REPLACE + lam21 = convex_min_1d(xl=np.float32(0.0), xr=D / div2, f=f, f_prime=f_prime) + lam11 = np.float32(max(D - (d - np.float32(1.0)) * lam21, np.float32(0.0))) + + objective_value_list.append(symKL_objective(lam10=lam10, lam20=LAM20, lam11=lam11, lam21=lam21, + u=u, v=v, d=d, g_norm_square=g_norm_square)) + + if (i >= 3 and objective_value_list[-4] - objective_value_list[-1] < OBJECTIVE_EPSILON) or i >= 100: + # logging.info("solve_small_pos, iter: {}, terminated".format(i)) + return (lam10, LAM20, lam11, lam21, np.float32(np.float32(0.5) * objective_value_list[-1] - d)) + + i += 1 + + +def convex_min_1d(xl, xr, f, f_prime): + # 求解二值优化问题:1-d line-search minimization + xm = np.float32((xl + xr) / np.float32(2.0)) + if abs(xl - xr) <= CONVEX_EPSILON or abs(xl - xm) <= CONVEX_EPSILON or abs(xm - xr) <= CONVEX_EPSILON: + return np.float32(min((f(x), x) for x in [xl, xm, xr])[1]) + if f_prime(xl) <= 0 and f_prime(xr) <= 0: + return np.float32(xr) + elif f_prime(xl) >= 0 and f_prime(xr) >= 0: + return np.float32(xl) + if f_prime(xm) > 0: + return convex_min_1d(xl=xl, xr=xm, f=f, f_prime=f_prime) + else: + return convex_min_1d(xl=xm, xr=xr, f=f, f_prime=f_prime) + + +def small_neg_problem_string(u, v, d, g_norm_square, p, P): + return 'minimize ({2}-1)*(z + {0})/{1} + ({2}-1)*{1}/(z+{0})+(x+{0}+{3})/(y+{1}) + (y+{1}+{3})/(x+{0}) subject to x>=0, y>=0, z>=0, z<=x, {4}*y+(1-{4})*x+(1-{4})*({2}-1)*z={5}'.format( + u, v, d, g_norm_square, p, P) + + +def small_pos_problem_string(u, v, d, g_norm_square, p, P): + return 'minimize ({2}-1)*{0}/(z+{1}) + ({2}-1)*(z + {1})/{0} + (x+{0}+{3})/(y+{1}) + (y+{1}+{3})/(x+{0}) subject to x>=0, y>=0, z>=0, z<=y, {4}*y+(1-{4})*x+{4}*({2}-1)*z={5}'.format( + u, v, d, g_norm_square, p, P) + + +def zero_uv_problem_string(g_norm_square, p, P): + return 'minimize (x+{0})/y + (y+{0})/x subject to x>=0, y>=0, {1}*y+(1-{1})*x={2}'.format(g_norm_square, p, P) diff --git a/fedlearner/privacy/splitnn/norm_attack.py b/fedlearner/privacy/splitnn/norm_attack.py new file mode 100644 index 000000000..9bc0c6495 --- /dev/null +++ b/fedlearner/privacy/splitnn/norm_attack.py @@ -0,0 +1,22 @@ +import tensorflow.compat.v1 as tf +from fedlearner.privacy.splitnn.marvell import KL_gradient_perturb + +# Norm Attack见论文:https://arxiv.org/pdf/2102.08504.pdf + +def get_norm_pred(loss, var_list, gate_gradients, marvell_protection, sumkl_threshold): + # 获取gradient + g = tf.gradients(loss, var_list, gate_gradients=gate_gradients)[0] + if marvell_protection: + g = KL_gradient_perturb(g, y, float(sumkl_threshold)) + # 计算gradient二范数,label=0和label=1的gradient二范数会存在差异 + norm_pred = tf.math.sigmoid(tf.norm(g, ord=2, axis=1)) + return norm_pred + +def norm_attack_auc(loss, var_list, gate_gradients, y, marvell_protection, sumkl_threshold): + norm_pred = get_norm_pred(loss, var_list, gate_gradients, marvell_protection, sumkl_threshold) + norm_pred = tf.reshape(norm_pred, y.shape) + sum_pred = tf.reduce_sum(norm_pred) + norm_pred = norm_pred / sum_pred + # 计算norm attack auc + _, norm_auc = tf.metrics.auc(y, norm_pred) + return norm_auc diff --git a/fedlearner/privacy/splitnn/readme.md b/fedlearner/privacy/splitnn/readme.md new file mode 100644 index 000000000..fe4ed91e5 --- /dev/null +++ b/fedlearner/privacy/splitnn/readme.md @@ -0,0 +1,83 @@ +# Fedlearner标签保护参数说明 + +## embedding保护 + +--using_embedding_protection : bool型,是否开启embedding保护(discorloss),True为开启 + +--discorloss_weight : float型,若开启embedding保护,设置embedding保护大小,值越大embedding保护效果越强,相应的对准确率影响越大,推荐设置设置范围在[0.001, 0.05] + +样例: + +```python +from fedlearner.privacy.splitnn.discorloss import DisCorLoss + +if args.using_embedding_protection: + + discorloss = DisCorLoss().tf_distance_cor(act1_f, y, False) + + #act1_f为另一方的前传激活值,y为标签,False表示不输出debug信息 + + discorloss = tf.math.reduce_mean(discorloss) + + loss += float(args.discorloss_weight) * discorloss + + #在原来的loss上添加discorloss +``` + +## gradient保护 + +--using_marvell_protection : bool型,是否开启gradient保护(Marvell),True为开启 + +--sumkl_threshold : float型,若开启gradient保护,设置gradient保护大小,值越小保护效果越强,相应的对准确率影响越大,推荐设置范围在[0.1, 4.0] + +样例: +```python +train_op = model.minimize(optimizer, loss, global_step=global_step, \ + + marvell_protection=args.using_marvell_protection, \ + + marvell_threshold=float(args.sumkl_threshold), labels=y) + +#model.minimize中使用参数marvell_protection和marvell_threshold并传入labels +``` +## fedpass保护 + +--using_fedpass: bool型,是否开启FedPass,True为开启 + +--fedpass_mean: fedpass的密钥的均值,默认值为50.0 + +--fedpass_scale: fedpass的密钥的方差,默认值为5.0 + +样例: +```python +dense_logits = fedpass(32, dense_activations, mean=float(args.fedpass_mean), scale=float(args.fedpass_scale)) +``` +## embedding攻击 + +--using_emb_attack : bool型,是否开启embedding攻击,True为开启 + +样例: +```python +from fedlearner.privacy.splitnn.emb_attack import emb_attack_auc + +if args.using_emb_attack: + + #传入另一方的前传激活值act1_f和标签y + + emb_auc = emb_attack_auc(act1_f, y) +``` + +## gradient攻击 + +--using_norm_attack : bool型,是否开启norm攻击,True为开启 + +样例: +```python +from fedlearner.privacy.splitnn.norm_attack import norm_attack_auc + +if args.using_norm_attack: + + #传入loss,另一方的前传激活值act1_f,model.minimize使用的参数gate_gradients以及标签y以及marvell参数 + + norm_auc = norm_attack_auc(loss=loss, var_list=[act1_f], gate_gradients=tf.train.Optimizer.GATE_OP, y=y, marvell_protection=args.marvell_protection, sumkl_threshold=args.sumkl_threshold) +``` diff --git a/fedlearner/trainer/estimator.py b/fedlearner/trainer/estimator.py index 6ca1c67d5..584f522b7 100644 --- a/fedlearner/trainer/estimator.py +++ b/fedlearner/trainer/estimator.py @@ -22,7 +22,7 @@ from tensorflow_estimator.python.estimator import model_fn as model_fn_lib from fedlearner.common import fl_logging - +from fedlearner.privacy.splitnn.marvell import KL_gradient_perturb class FLModel(object): def __init__(self, role, bridge, example_ids, exporting=False): @@ -93,7 +93,10 @@ def minimize(self, aggregation_method=None, colocate_gradients_with_ops=False, name=None, - grad_loss=None): + grad_loss=None, + marvell_protection=False, + marvell_threshold=0.25, + labels=None): recv_grads = [i for i in self._recvs if i[2]] if var_list is None: @@ -113,6 +116,9 @@ def minimize(self, send_grads = grads_and_vars[:len(recv_grads)] for (n, _, _), (grad, _) in zip(recv_grads, send_grads): if grad is not None: + # Marvell:给即将发送的gradient添加噪声 + if marvell_protection and labels is not None: + grad = KL_gradient_perturb(grad, labels, marvell_threshold) self.send(n + '_grad', grad) if grads_and_vars[len(recv_grads):]: diff --git a/fedlearner/trainer/trainer_worker.py b/fedlearner/trainer/trainer_worker.py index 5cb3bc99c..b74a4e1df 100644 --- a/fedlearner/trainer/trainer_worker.py +++ b/fedlearner/trainer/trainer_worker.py @@ -185,6 +185,43 @@ def create_argument_parser(): type=str, default=None, help="use Meituan hadoop to get or upload data") + # 添加与label protection相关的参数 + parser.add_argument('--using_embedding_protection', + type=str_as_bool, + default='False', + help='Whether use embedding protection.') + parser.add_argument('--discorloss_weight', + type=str, + default='0.01', + help='Distance correlation weight.') + parser.add_argument('--using_marvell_protection', + type=str_as_bool, + default='False', + help='Whether use marvell protection.') + parser.add_argument('--sumkl_threshold', + type=str, + default='0.25', + help='Marvell sumKL threshold.') + parser.add_argument('--using_fedpass', + type=str_as_bool, + default='False', + help='Whether use fedpass protection.') + parser.add_argument('--fedpass_mean', + type=str, + default='50.0', + help='FedPass secretkey mean.') + parser.add_argument('--fedpass_scale', + type=str, + default='5.0', + help='FedPass secretkey scale.') + parser.add_argument('--using_emb_attack', + type=str_as_bool, + default='False', + help='Whether use embedding attack.') + parser.add_argument('--using_norm_attack', + type=str_as_bool, + default='False', + help='Whether use norm attack.') return parser def _run_master(role,