forked from nf-core/deepmodeloptim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nextflow.config
293 lines (262 loc) · 12.6 KB
/
nextflow.config
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
/*
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
nf-core/deepmodeloptim Nextflow config file
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Default config options for all compute environments
----------------------------------------------------------------------------------------
*/
// Global default params, used in configs
params {
// Input options
input = null // TODO either change one of the params above by input or create a samplesheet containing the info of them
csv = null // the input file containing all input data
model = null // the model file in python, the model that will be tested by this pipeline
exp_conf = null // the json config file that specifies all the parameters relative to the data manipulation
tune_conf = null // the config file with all the hyperparameter directives (choiches) and all ray tune specs
// Optional inputs
initial_weights = null // the initial weights of the model. These files can be used to start the training instead of random initialization. One can provide several files, each of them will be used for a different run.
// Output options
outdir = "./results/" // the outdir has to be the one the user specify _ the unique name of the run _ the time so that multiple runs will not overlap
publish_dir_mode = "copy"
// Computational resources
max_gpus = 1 // requesting the gpus for the tuning steps.
// TODO this should not be in the nextflow config but in each config
// max_cpus = 12 // this flasg and the following are for regulating resources, profiles can overwrite these.
// max_memory = 32.GB
// max_time = "72.h"
// Error options
max_retries = 0
err_start = 'finish'
// Optional flags
check_model = true // flag to tell whether to check or not if the model can be tuned and trained. It does one call of the batch function, (predicting), of the model importing and using everything needed for that. Default run such a check.
check_model_num_samples = null // optional flag to do a more extensive check during check_model. This will override user given num_sample value for the tune run. This will give the user control on how extensive it wants the check to be.
shuffle = true // flag to tell wether to shuffle or not the data and run a train on it. Sanity check always run on default. (If the way we think at shuffle change maybe is better to remove this flag and make it into a parameter of the user given json for noise nad split)
debug_mode = false // flag used to switch to debug mode for the pipeline.
// General
help = false
validate_params = true // tells wether or not to validate input values using nf-schema.
// Boilerplate options
outdir = null
publish_dir_mode = 'copy'
email = null
email_on_fail = null
plaintext_email = false
monochrome_logs = false
hook_url = null
help = false
help_full = false
show_hidden = false
version = false
pipelines_testdata_base_path = 'https://raw.githubusercontent.com/nf-core/test-datasets/'
// Config options
config_profile_name = null
config_profile_description = null
custom_config_version = 'master'
custom_config_base = "https://raw.githubusercontent.com/nf-core/configs/${params.custom_config_version}"
config_profile_contact = null
config_profile_url = null
// Schema validation default options
validate_params = true
}
// Load base.config by default for all pipelines
includeConfig 'conf/base.config'
profiles {
debug {
dumpHashes = true
process.beforeScript = 'echo $HOSTNAME'
cleanup = false
nextflow.enable.configProcessNamesValidation = true
}
conda {
conda.enabled = true
docker.enabled = false
singularity.enabled = false
podman.enabled = false
shifter.enabled = false
charliecloud.enabled = false
conda.channels = ['conda-forge', 'bioconda']
apptainer.enabled = false
}
mamba {
conda.enabled = true
conda.useMamba = true
docker.enabled = false
singularity.enabled = false
podman.enabled = false
shifter.enabled = false
charliecloud.enabled = false
apptainer.enabled = false
}
docker {
docker.enabled = true
conda.enabled = false
singularity.enabled = false
podman.enabled = false
shifter.enabled = false
charliecloud.enabled = false
apptainer.enabled = false
docker.runOptions = '-u $(id -u):$(id -g)'
}
arm {
docker.runOptions = '-u $(id -u):$(id -g) --platform=linux/amd64'
}
singularity {
singularity.enabled = true
singularity.autoMounts = true
conda.enabled = false
docker.enabled = false
podman.enabled = false
shifter.enabled = false
charliecloud.enabled = false
apptainer.enabled = false
}
podman {
podman.enabled = true
conda.enabled = false
docker.enabled = false
singularity.enabled = false
shifter.enabled = false
charliecloud.enabled = false
apptainer.enabled = false
}
shifter {
shifter.enabled = true
conda.enabled = false
docker.enabled = false
singularity.enabled = false
podman.enabled = false
charliecloud.enabled = false
apptainer.enabled = false
}
charliecloud {
charliecloud.enabled = true
conda.enabled = false
docker.enabled = false
singularity.enabled = false
podman.enabled = false
shifter.enabled = false
apptainer.enabled = false
}
apptainer {
apptainer.enabled = true
apptainer.autoMounts = true
conda.enabled = false
docker.enabled = false
singularity.enabled = false
podman.enabled = false
shifter.enabled = false
charliecloud.enabled = false
}
wave {
apptainer.ociAutoPull = true
singularity.ociAutoPull = true
wave.enabled = true
wave.freeze = true
wave.strategy = 'conda,container'
}
gitpod {
executor.name = 'local'
executor.cpus = 4
executor.memory = 8.GB
}
test { includeConfig "conf/test.config" }
test_learn { includeConfig "conf/test_learn.config" }
test_stub { includeConfig "conf/test_stub.config" }
local { includeConfig "conf/local.config" }
test_full { includeConfig 'conf/test_full.config' }
}
// Load nf-core custom profiles from different Institutions
includeConfig !System.getenv('NXF_OFFLINE') && params.custom_config_base ? "${params.custom_config_base}/nfcore_custom.config" : "/dev/null"
// Load nf-core/deepmodeloptim custom profiles from different institutions.
// TODO nf-core: Optionally, you can add a pipeline-specific nf-core config at https://github.com/nf-core/configs
// TODO This line can be uncommented once you move the pipeline to nf-core. A file deepmodeloptim.config will be automatically created at the nf-core/configs repo. This is to allow having a pipeline specific config.
// includeConfig !System.getenv('NXF_OFFLINE') && params.custom_config_base ? "${params.custom_config_base}/pipeline/deepmodeloptim.config" : "/dev/null"
// Set default registry for Apptainer, Docker, Podman, Charliecloud and Singularity independent of -profile
// Will not be used unless Apptainer / Docker / Podman / Charliecloud / Singularity are enabled
// Set to your registry if you have a mirror of containers
apptainer.registry = 'quay.io'
docker.registry = 'quay.io'
podman.registry = 'quay.io'
singularity.registry = 'quay.io'
charliecloud.registry = 'quay.io'
// Export these variables to prevent local Python/R libraries from conflicting with those in the container
// The JULIA depot path has been adjusted to a fixed path `/usr/local/share/julia` that needs to be used for packages in the container.
// See https://apeltzer.github.io/post/03-julia-lang-nextflow/ for details on that. Once we have a common agreement on where to keep Julia packages, this is adjustable.
env {
PYTHONNOUSERSITE = 1
R_PROFILE_USER = "/.Rprofile"
R_ENVIRON_USER = "/.Renviron"
JULIA_DEPOT_PATH = "/usr/local/share/julia"
}
// Set bash options
process.shell = """\
bash
set -e # Exit if a tool returns a non-zero status/exit code
set -u # Treat unset variables and parameters as an error
set -o pipefail # Returns the status of the last command to exit with a non-zero status or zero if all successfully execute
set -C # No clobber - prevent output redirection from overwriting files.
"""
// Disable process selector warnings by default. Use debug profile to enable warnings.
nextflow.enable.configProcessNamesValidation = false
def trace_timestamp = new java.util.Date().format( 'yyyy-MM-dd_HH-mm-ss')
timeline {
enabled = true
file = "${params.outdir}/pipeline_info/execution_timeline_${trace_timestamp}.html"
}
report {
enabled = true
file = "${params.outdir}/pipeline_info/execution_report_${trace_timestamp}.html"
}
trace {
enabled = true
file = "${params.outdir}/pipeline_info/execution_trace_${trace_timestamp}.txt"
}
dag {
enabled = true
file = "${params.outdir}/pipeline_info/pipeline_dag_${trace_timestamp}.html"
}
manifest {
name = 'nf-core/deepmodeloptim'
author = """Mathys Grapotte"""
homePage = 'https://github.com/nf-core/deepmodeloptim'
description = """nf-core/deepmodeloptim is an end-to-end nextflow based pipeline for statistically testing training procedures of machine learning models"""
mainScript = 'main.nf'
nextflowVersion = '!>=24.04.2'
version = '1.0.0dev'
doi = ''
}
// Nextflow plugins
plugins {
id '[email protected]' // Validation of pipeline parameters and creation of an input channel from a sample sheet
}
validation {
defaultIgnoreParams = ["genomes"]
help {
enabled = true
command = "nextflow run $manifest.name -profile <docker/singularity/.../institute> --input samplesheet.csv --outdir <OUTDIR>"
fullParameter = "help_full"
showHiddenParameter = "show_hidden"
beforeText = """
-\033[2m----------------------------------------------------\033[0m-
\033[0;32m,--.\033[0;30m/\033[0;32m,-.\033[0m
\033[0;34m ___ __ __ __ ___ \033[0;32m/,-._.--~\'\033[0m
\033[0;34m |\\ | |__ __ / ` / \\ |__) |__ \033[0;33m} {\033[0m
\033[0;34m | \\| | \\__, \\__/ | \\ |___ \033[0;32m\\`-._,-`-,\033[0m
\033[0;32m`._,._,\'\033[0m
\033[0;35m ${manifest.name} ${manifest.version}\033[0m
-\033[2m----------------------------------------------------\033[0m-
"""
afterText = """${manifest.doi ? "* The pipeline\n" : ""}${manifest.doi.tokenize(",").collect { " https://doi.org/${it.trim().replace('https://doi.org/','')}"}.join("\n")}${manifest.doi ? "\n" : ""}
* The nf-core framework
https://doi.org/10.1038/s41587-020-0439-x
* Software dependencies
https://github.com/${manifest.name}/blob/master/CITATIONS.md
"""
}
summary {
beforeText = validation.help.beforeText
afterText = validation.help.afterText
}
}
// Load modules.config for DSL2 module specific options
includeConfig 'conf/modules.config'