Skip to content

Latest commit

 

History

History
23 lines (20 loc) · 1.19 KB

README.md

File metadata and controls

23 lines (20 loc) · 1.19 KB

flower_world

这是一个图像识别项目,基于tensorflow,现有的CNN网络可以识别四种花的种类。适合新手对使用tensorflow进行一个完整的图像识别过程有一个大致轮廓。项目包括对数据集的处理,从硬盘读取数据,CNN网络的定义,训练过程,还实现了一个GUI界面用于使用训练好的网络。

Require

  1. Python3.5+
  2. tensorflow
  3. wxPython

Quick start

  • git clone这个项目
  • 导入你喜欢的IDE如pycharm,或者你喜欢的编辑器如Atom。
  • 解压input_data.rar到你喜欢的目录。
  • 修改train.py中
train_dir = 'D:/xxxx/xxxxx/input_data'  # 训练样本的读入路径
logs_train_dir = 'D:/xxxx/xxxxx/save'  # logs存储路径

为你本机的目录。

  • 运行train.py开始训练。
  • 训练完成后,修改test.py中的logs_train_dir = 'D:/xxxxxx/save/'为你的目录。
  • 运行test.py或者gui.py查看结果。

另外本项目分别有inception_resnet_v1, inceptionV1, inceptionV2 和 inceptionV4 四种网络模型,如果像训练某一个模型,可以在train.py文件中修改模型名称并训练,另外需注意的是因为原始图片的尺寸原因,所以模型并不是标准的。