-
Notifications
You must be signed in to change notification settings - Fork 0
/
Run the GUI for Predictions.py
61 lines (50 loc) · 1.96 KB
/
Run the GUI for Predictions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import tkinter as tk
import numpy as np
import cv2
from tkinter import filedialog
from tkinter import *
from PIL import ImageTk, Image
import tensorflow as tf
# Load the trained model
model = tf.keras.models.load_model('skin_cancer_detection.h5')
Categories = ['benign', 'malignant']
# Initialise GUI
top = tk.Tk()
top.geometry('800x600')
top.title('Skin Cancer Detection')
top.configure(background='#CDCDCD')
label = Label(top, background='#CDCDCD', font=('arial', 15, 'bold'))
sign_image = Label(top)
def classify(file_path):
image = cv2.imread(file_path)
image = cv2.resize(image, (175, 175))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_data = np.array(image).reshape(-1, 175, 175, 3)
pred = model.predict(image_data)
sign = Categories[int(pred[0][0])]
label.configure(text=sign)
def show_classify_button(file_path):
classify_b = Button(top, text="Classify Image", command=lambda: classify(file_path), padx=10, pady=5)
classify_b.configure(background='#364156', foreground='white', font=('arial', 10, 'bold'))
classify_b.place(relx=0.79, rely=0.46)
def upload_image():
try:
file_path = filedialog.askopenfilename()
uploaded = Image.open(file_path)
uploaded.thumbnail(((top.winfo_width() / 2.25), (top.winfo_height() / 2.25)))
im = ImageTk.PhotoImage(uploaded)
sign_image.configure(image=im)
sign_image.image = im
label.configure(text='')
show_classify_button(file_path)
except Exception as e:
pass
upload = Button(top, text="Upload an image", command=upload_image, padx=10, pady=5)
upload.configure(background='#364156', foreground='white', font=('arial', 10, 'bold'))
upload.pack(side=BOTTOM, pady=50)
sign_image.pack(side=BOTTOM, expand=True)
label.pack(side=BOTTOM, expand=True)
heading = Label(top, text="Skin Cancer Detection", pady=20, font=('arial', 20, 'bold'))
heading.configure(background='#CDCDCD', foreground='#364156')
heading.pack()
top.mainloop()