forked from jeffdonahue/bigan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_gan.py
900 lines (825 loc) · 36.7 KB
/
train_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
import sys
from collections import OrderedDict
import copy
import itertools
from matplotlib import pyplot as plt
import numpy as np
import os
from sklearn.externals import joblib
from time import time
import theano
import theano.tensor as T
import data
from data import rescale
import lib.rng as rng
from lib.lazy_function import LazyFunction as lazy_function
import argparse
parser = argparse.ArgumentParser(description='Train (Bi)GANs')
# RNG
parser.add_argument('--seed', type=int, help='RNG seed')
# Objective (which modules to train? what losses to minimize?)
parser.add_argument('--discrim_weight', type=float, default=1,
help='Weighting of discrim loss')
parser.add_argument('--joint_discrim_weight', type=float, default=0,
help='Train joint (BiGAN) discriminator (x, z) with this weight')
parser.add_argument('--encode', action='store_true', help='Learn encoder')
parser.add_argument('--no-encode', action='store_false', dest='encode',
help='No encoder')
parser.add_argument('--encode_weight', type=float, default=1,
help='Encoder weighting of actual encode loss')
parser.add_argument('--encode_normalize', action='store_true',
help='Normalize encoder costs by distribution dimension')
parser.add_argument('--encode_gen_weight', type=float, default=0,
help='Weight of encoder loss in generator optimization')
parser.add_argument('--encode_kldiv_real', type=float, default=0,
help='If non-zero, train encoder on real images, with this KL divergence '
'loss weight')
parser.add_argument('--noise_input_joint_discrim',
help='Comma-separated list of binary values (0/1) indicating whether each '
'part of the noise is input to the joint discriminator')
# Noise/latent distribution (Z) settings
parser.add_argument('--noise', default='u-100',
help='Specifies distribution of noise input to generation net')
parser.add_argument('--noise_weight', type=str,
help='Comma-separated floats specifying a weights for each noise subdist')
parser.add_argument('--noise_input_weight', action='store_true',
help='Whether to weight the noise distribution components in the INPUT')
# Adversarial optimization
parser.add_argument('--k', type=float, default=1,
help='Number of discrim updates per gen update (may be fractional do to '
'multiple gen updates per discrim update')
parser.add_argument('--no_update_both', action='store_true',
help=("Don't update both nets together, even if k==1 "
"(nets always updated separately if k!=1)"))
# Architecture settings
# General
parser.add_argument('--net_fc', type=int, default=0,
help='Number of FC layers of 2x dimension before/after deconv/conv net')
parser.add_argument('--net_fc_dims', default='',
help='Comma separated list of integer FC layer sizes (if want different '
'sizes than given by --net_fc)')
parser.add_argument('--nobn', action='store_true', help='No batch norm')
parser.add_argument('--bn_separate', action='store_true',
help='Apply batch norm to x, z separately')
parser.add_argument('--nogain', action='store_true', help='No gain')
parser.add_argument('--log_gain', action='store_true', help='Learn log of gain')
parser.add_argument('--nolog_gain', action='store_false', dest="log_gain")
parser.add_argument('--nobias', action='store_true', help='No bias')
parser.add_argument('--no_decay_bias', action='store_true',
help="Don't apply weight decay to the bias(es), if any")
parser.add_argument('--no_decay_gain', action='store_true',
help="Don't apply weight decay to the gain(s), if any")
# Deconvolutional / Generator
parser.add_argument('--gen_net',
help='Name of network architecture for generator')
parser.add_argument('--gen_net_size', type=int,
help='Base dimension of gen net layers (see net.py for defaults)')
parser.add_argument('--deconv_nonlin', default='ReLU',
help='Nonlinearity for deconv nets')
parser.add_argument('--deconv_ksize', type=int, default=5,
help='Kernel size for deconv nets')
# Convolutional (Discriminator or Encoder)
parser.add_argument('--feat_net_size', type=int,
help='Base dimension of feat net layers (see net.py for defaults)')
parser.add_argument('--conv_nonlin', default='LReLU',
help='Nonlinearity for conv nets')
parser.add_argument('--net_fc_drop', type=float, default=0,
help='The dropout probability for the convnet FC layers')
parser.add_argument('--cond_fc', type=int,
help='Number of FC layers of 2x dimension before/after deconv/conv net')
parser.add_argument('--cond_fc_dims',
help='Comma separated list of integer FC layer sizes (if want different '
'sizes than given by --cond_fc)')
parser.add_argument('--cond_fc_drop', type=float,
help='The dropout probability for the cond FC layers')
# Discriminator
parser.add_argument('--discrim_net',
help='Name of network architecture for discriminator')
parser.add_argument('--discrim_net_size', type=int,
help='Base dimension of discrim net layers, overriding --feat_net_size')
parser.add_argument('--minibatch_layer_size',
help='Specify minibatch layer as comma-separated list of 3 ints, '
'e.g. 300,50,16 for OpenAI settings')
parser.add_argument('--post_minibatch_layer_dims',
help='Comma-separated list of ints specifying FC layer dims '
'applied after the minibatch layer')
parser.add_argument('--cat_inputs', action='store_true',
help='Concatenate real/gen images input to discrim+encoder '
'(affects batch norm)')
# Encoder
parser.add_argument('--encode_net',
help='Name of network architecture for encoder')
parser.add_argument('--encode_nonlin',
help='Nonlinearity for encoder (conv_nonlin used if not specified)')
parser.add_argument('--encode_net_fc', type=int,
help='Number of FC layers of 2x dimension before/after encode net')
parser.add_argument('--encode_net_fc_dims', type=str,
help='Comma separated list of integer FC layer sizes (if want different '
'sizes than given by --encode_net_fc)')
parser.add_argument('--encode_net_fc_drop', type=float,
help='The dropout probability for the convnet FC layers')
parser.add_argument('--log_var_bias', type=float, default=-5,
help='Bias to apply to log variance prediction for GaussianRecon*Distribution')
parser.add_argument('--encode_out_bias', action='store_true',
help='Encoder output predictor includes a learned bias term')
# Data
parser.add_argument('--dataset', default='mnist',
help='Dataset (mnist/imagenet)')
parser.add_argument('--raw_size', type=int,
help='Raw minor edge size (for image datasets)')
parser.add_argument('--crop_size', type=int, default=28,
help='Crop size (for image datasets)')
parser.add_argument('--crop_resize', type=int,
help='Size of crop for D in, G out (E still takes crop_size resolution)')
parser.add_argument('--include_labels', type=str,
help='Comma-separated list of labels to include; e.g., "0,100,130,249)"')
parser.add_argument('--max_labels', type=int,
help='If set, include only labels 0:(max_labels - 1)')
parser.add_argument('--max_images', type=int,
help='If set, include at most this many images')
parser.add_argument('--use_test_set', action='store_true',
help='MNIST: use the full training set (train+val) for training; test set as val')
# Black box optimization
parser.add_argument('--optimizer', default='adam',
help='Optimization algorithm (adam, sgd, or rms)')
parser.add_argument('--discrim_optimizer',
help='Discriminator optimization algorithm -- '
'defaults to optimizer if unspecified')
parser.add_argument('--batch_size', type=int, default=128,
help='Batch size used for learning')
parser.add_argument('--learning_rate', type=float, default=0.0002,
help='Initial learning rate')
parser.add_argument('--final_lr_mult', type=float,
help='Final learning rate factor on the initial LR'
'(default is 0.01 for exponential decay, 0 for linear decay)')
parser.add_argument('--linear_decay', action='store_true',
help='Decay learning rate linearly (otherwise, decay exponentially)')
parser.add_argument('--decay', type=float, default=2.5e-5,
help='L2 weight decay')
parser.add_argument('--discrim_decay', type=float,
help='L2 weight decay for the discriminator (defaults to --decay)')
parser.add_argument('--momentum', type=float, default=0.5,
help='Momentum coeff for Adam/SGD')
parser.add_argument('--epochs', type=int, default=50,
help='Number of epochs to train before beginning LR decay '
'(doubled if k != 1)')
parser.add_argument('--decay_epochs', type=int, default=50,
help='Number of epochs to train decay LR to 0 (doubled if k != 1)')
# Visualization / evaluation output
parser.add_argument('--exp_dir', default='exp',
help='Directory where experiment results are stored')
parser.add_argument('--disp_interval', type=int,
help='Compute and display test accuracy every disp_interval epochs')
parser.add_argument('--deploy_iters', type=int, default=50,
help='Number of iterations to perform "deploy" steps (e.g. BN tuning)')
parser.add_argument('--no_disp_one', action='store_true',
help='Also eval/disp at iter #1, unless --no_disp_one is given')
parser.add_argument('--disp_samples', type=int, default=200,
help='Max number of samples to display')
parser.add_argument('--megabatch_gb', type=float, default=1.0,
help='Max GB per megabatch (~16 megabatches are created)')
parser.add_argument('--megabatch_images', type=int, default=10000,
help='Max images per megabatch (~16 megabatches are created)')
parser.add_argument('--num_val_megabatch', type=int, default=1)
parser.add_argument('--num_train_megabatch', type=int, default=5)
parser.add_argument('--num_sample_megabatch', type=int, default=10)
# Train a linear classifier (logistic regression) on labels as part of
# feature learning evaluation (in addition to kNN classifier)
parser.add_argument('--classifier', action='store_true',
help='Learn classifier from discrim (and encoder) feats')
parser.add_argument('--classifier_deploy', action='store_true',
help='Learn classifier at deploy time')
# Model saving / loading
parser.add_argument('--save_interval', type=int,
help='Save params every N epochs for this N')
parser.add_argument('--resume', type=int,
help='Epoch from which to resume training and load weights')
parser.add_argument('--weights',
help='Weights filename prefix (e.g., * in *_discrim_params.jl)')
args = parser.parse_args()
print 'Args: %s' % args
args.net_fc_dims = [int(d) for d in args.net_fc_dims.split(',') if d]
if args.encode_net_fc_dims is not None:
args.encode_net_fc_dims = \
[int(d) for d in args.encode_net_fc_dims.split(',') if d]
if args.cond_fc_dims is not None:
args.cond_fc_dims = \
[int(d) for d in args.cond_fc_dims.split(',') if d]
if args.minibatch_layer_size is not None:
args.minibatch_layer_size = \
[int(d) for d in args.minibatch_layer_size.split(',') if d]
assert len(args.minibatch_layer_size) == 3
if args.post_minibatch_layer_dims is not None:
args.post_minibatch_layer_dims = \
[int(d) for d in args.post_minibatch_layer_dims.split(',') if d]
if args.seed is not None:
rng.set_seed(args.seed)
py_rng = rng.py_rng
np_rng = rng.np_rng
t_rng = rng.t_rng
from lib import updates
from lib.theano_utils import floatX, sharedX
from lib.data_utils import shuffle, list_shuffle
from lib.metrics import nnc_score, nnd_score
from net import Output, L, Net
from dist import MultiDistribution
import gan
bnkwargs = dict(bnkwargs=dict(
batch_norm=(not args.nobn),
gain=(not args.nogain) and (not args.nobn),
log_gain=args.log_gain,
bias=(not args.nobias),
))
crop = args.crop_size
if args.crop_resize is None:
args.crop_resize = crop
dataset = data.Dataset(args)
ny, nc, inverse_transform = dataset.ny, dataset.nc, dataset.inverse_transform
def transform(X, crop=args.crop_resize):
# X: uint8-type ndarray [0, 255] (possibly flattened)
# returns NCHW float array in [0, 1]
X = floatX(X).reshape(-1, nc, crop, crop)
return rescale(X, (0, 255), dataset.native_range)
def input_transform(X):
# X: uint8-type tensor [0, 255]
# returns a float tensor in native_range
# ([-1, 1] for ImageNet, [0, 1] for MNIST)
X = T.cast(X, theano.config.floatX)
return rescale(X, (0, 255), dataset.native_range)
def gen_transform(gX):
# X: float tensor in [0, 1] (e.g., output by generator's sigmoid)
# returns float tensor in native_range
# ([-1, 1] for ImageNet, [0, 1] for MNIST)
return rescale(gX, (0, 1), dataset.native_range)
def gen_output_to_enc_input(gX):
gX = gX.reshape(-1, nc, crop, crop)
gX = np.round(rescale(gX, dataset.native_range, (0, 255)))
gX[gX < 0] = 0
gX[gX > 255] = 255
return np.array(gX, dtype=np.uint8)
if args.final_lr_mult is None:
args.final_lr_mult = 0 if args.linear_decay else 0.01
model_dir = '%s/models'%(args.exp_dir,)
samples_dir = '%s/samples'%(args.exp_dir,)
for d in [model_dir, samples_dir]:
if not os.path.exists(d):
os.makedirs(d)
if args.noise_weight is not None:
args.noise_weight = [float(f) for f in args.noise_weight.split(',')]
if args.noise_input_joint_discrim is None:
args.noise_input_joint_discrim = [True] * len(args.noise.split('_'))
else:
args.noise_input_joint_discrim = [bool(float(x)) for x in
args.noise_input_joint_discrim.split(',')]
assert len(args.noise_input_joint_discrim) == len(args.noise.split('_'))
dist = MultiDistribution(args.batch_size, args.noise,
normalize=args.encode_normalize,
weights=args.noise_weight, weight_embed=args.noise_input_weight)
for d in dist.dists:
d.log_var_bias = args.log_var_bias
# input placeholders
Xi = T.tensor4(dtype='uint8')
X = Output(input_transform(Xi), (args.batch_size, nc, args.crop_size, args.crop_size))
assert args.crop_resize <= args.crop_size
if args.crop_size == args.crop_resize:
Xis = Xi
else:
Xis = T.tensor4(dtype='uint8')
Xs = Output(input_transform(Xis), (args.batch_size, nc, args.crop_resize, args.crop_resize))
Z = dist.placeholders
if args.classifier:
Y = T.ivector()
y = Output(Y, shape=(args.batch_size, ), index_max=ny)
else:
Y = None
y = None
modules = []
nets = []
# generation
gen_kwargs = dict(args=args, dist=dist, nc=nc, bnkwargs=bnkwargs,
gen_transform=gen_transform)
train_gen = gan.Generator(**gen_kwargs)
gX = train_gen.data
gXtest = gan.Generator(source=train_gen.net, mode='test', **gen_kwargs).data
lrt = sharedX(args.learning_rate)
def get_updater(optimizer, **kwargs):
opt_map = dict(adam='Adam', sgd='Momentum', rms='RMSprop')
if optimizer not in opt_map:
raise ValueError('Unknown optimizer: %s' % (optimizer,))
if optimizer == 'adam':
kwargs.update(b1=args.momentum)
elif optimizer == 'sgd':
kwargs.update(momentum=args.momentum)
opt_func = getattr(updates, opt_map[optimizer])
return opt_func(**kwargs)
ignored_prefixes = []
if args.no_decay_bias: ignored_prefixes.append('Bias')
if args.no_decay_gain: ignored_prefixes.append('Gain')
reg = updates.Regularizer(l2=args.decay, ignored_prefixes=ignored_prefixes)
updater = get_updater(args.optimizer, lr=lrt, regularizer=reg)
if args.discrim_decay is None:
args.discrim_decay = args.decay
discrim_reg = updates.Regularizer(l2=args.discrim_decay,
ignored_prefixes=ignored_prefixes)
if args.discrim_optimizer is None:
args.discrim_optimizer = args.optimizer
discrim_updater = get_updater(args.discrim_optimizer,
lr=lrt, regularizer=discrim_reg)
def featurizer(x=None, gx=None, args=args, **kwargs):
return gan.Featurizer(args, dist, x, gx, y, nc=nc, ny=ny,
bnkwargs=bnkwargs, updater=updater, **kwargs)
def discrim_featurizer(x=Xs, gx=gX, *a, **k):
return featurizer(x=x, gx=gx, *a, **k)
gx_enc = gX if args.crop_size == args.crop_resize else None
def encode_featurizer(x=X, gx=gx_enc, *a, **k):
return featurizer(x=x, gx=gx, *a, **k)
if args.discrim_weight:
f_discrim = discrim_featurizer(
discrim_weight=args.discrim_weight,
net_name=args.discrim_net, net_size=args.discrim_net_size,
is_discrim=True,
name='Discriminator')
d_cost = f_discrim.net.get_loss().mean()
discrim_params = f_discrim.net.params()
d_updates = f_discrim.net.get_updates(updater=discrim_updater)
g_cost = f_discrim.net.get_loss('opp_loss_gen')
train_gen.net.add_loss(g_cost)
modules.append(f_discrim)
nets.append(f_discrim.net)
else:
f_discrim = None
d_cost = 0
discrim_params = []
d_updates = []
if args.encode:
f_encoder = encode_featurizer(
encode_weight=args.encode_weight,
joint_discrim_weight=args.joint_discrim_weight,
net_name=args.encode_net,
name='Encoder')
modules.append(f_encoder)
def sample_z_from_x(x, net=None):
f_in = f_encoder.feats(x)
z_preds = f_encoder.encoder.preds(f_in).value
z_sample = dist.logits_to_sample(z_preds)
is_input = dist.dist_sized_slices(args.noise_input_joint_discrim)
return [z for z, i in zip(z_sample, is_input) if i]
def disp(x):
if isinstance(x, (int, float)):
return x
return x.mean()
disp_costs = OrderedDict(D=disp(d_cost)) # name -> cost mapping
gen_params = train_gen.net.params()
nets.append(train_gen.net)
if args.joint_discrim_weight:
assert args.encode
def joint_discrim(X, Xs, Y, Z_dist, name='JointDiscriminator'):
joint_discrim_args = copy.deepcopy(args)
joint_discrim_args.classifier = 0
eZ = sample_z_from_x(X, net=f_encoder.net)
gX = train_gen.data
_, weights = gen_cond_and_weights = Z_dist.embed_data()
real_cond_and_weights = eZ, weights
discrim = discrim_featurizer(x=Xs, gx=gX, args=joint_discrim_args,
extra_cond_gen=gen_cond_and_weights,
extra_cond_real=real_cond_and_weights,
discrim_weight=1,
net_name=args.discrim_net, net_size=args.discrim_net_size,
is_discrim=True, name=name)
return discrim
f_joint_discrim = joint_discrim(X, Xs, Y, dist)
weight = args.joint_discrim_weight
f_encoder.net.add_loss(f_joint_discrim.net.get_loss('opp_loss_real'),
weight=weight, name='loss_real')
f_encoder.net.add_loss(f_joint_discrim.net.get_loss('opp_loss_gen'),
weight=weight, name='loss_gen')
modules.append(f_joint_discrim)
nets.append(f_joint_discrim.net)
d_updates += f_joint_discrim.net.get_updates(updater=discrim_updater)
joint_discrim_params = f_joint_discrim.net.params()
disp_costs.update(JD=disp(f_joint_discrim.net.get_loss()))
else:
joint_discrim_params = []
if args.encode:
net = f_encoder.net
num_loss_terms = sum(l in net.loss for l in ['loss', 'loss_real', 'loss_gen'])
weight = 1.0 / num_loss_terms
if 'loss_real' in net.loss:
net.add_agg_loss_term('loss_real', weight=weight)
if 'loss_gen' in net.loss:
net.add_agg_loss_term('loss_gen', weight=weight)
nets.append(net)
if args.encode_gen_weight:
try:
train_gen.net.add_loss(net.get_loss(),
weight=args.encode_gen_weight)
except KeyError:
print 'Warning: encoder had no separate loss to contribute to gen'
encode_gen_params = net.learnables()
for k in net.learnable_keys():
# mark all params unlearnable -- will be learned by gen
net._params[k] = net._params[k][0], False
assert not net.learnables()
else:
encode_gen_params = []
encode_params = net.params()
e_updates = net.get_updates(updater=updater)
encoder_loss = f_encoder.net.get_loss()
disp_costs.update(E=disp(encoder_loss))
e_only_cost = f_encoder.encoder.cost
if (e_only_cost is not None) and (e_only_cost != encoder_loss):
disp_costs.update(e=disp(e_only_cost))
else:
encode_params, encode_gen_params, e_updates = [], [], []
g_updates = train_gen.net.get_updates(updater=updater,
extra_params=encode_gen_params)
disp_costs.update(G=disp(train_gen.net.get_loss()))
def set_mode(mode):
for m in modules:
m.set_mode(mode)
train_label = (args.classifier and not args.classifier_deploy)
deploy_label = (args.classifier and args.classifier_deploy)
X_discrim_input = [Xis]
X_enc_input = [Xi]
for k, v in disp_costs.iteritems():
if isinstance(v, (int, float, type(None))):
del disp_costs[k]
set_mode('test')
if f_discrim is not None:
discrim_feats = f_discrim.feats(X)
_discrim_feats = lazy_function(X_discrim_input, discrim_feats.value)
set_mode('train')
if args.classifier:
if f_discrim is not None:
discrim_preds = f_discrim.labeler.preds(discrim_feats)
_discrim_preds = lazy_function([discrim_feats.value],
discrim_preds.value)
set_mode('train')
small_inputs = [Xis] if Xis != Xi else []
inputs = [Xi] + small_inputs
if train_label:
inputs += [Y]
inputs += Z
deploy_inputs = [Xi] + small_inputs
if deploy_label:
deploy_inputs += [Y]
deploy_inputs += Z
deploy_updates = []
for n in nets: deploy_updates.extend(n.get_deploy_updates())
_deploy_update = lazy_function(deploy_inputs, disp_costs.values(),
updates=deploy_updates)
update_both = (not args.no_update_both) and (args.k == 1)
niter = args.epochs # # of iter at starting learning rate
niter_decay = args.decay_epochs # # of iter to decay learning rate
if update_both:
all_updates = g_updates + d_updates + e_updates
_train_gd = lazy_function(inputs, [], updates=all_updates,
on_unused_input='ignore')
else:
niter *= 2
niter_decay *= 2
# update encoder with generator
train_d_updates = d_updates
train_g_updates = g_updates + e_updates
_train_g = lazy_function(inputs, [], updates=train_g_updates,
on_unused_input='ignore')
_train_d = lazy_function(inputs, [], updates=train_d_updates)
_gen_train = lazy_function(Z, gX.value)
set_mode('test')
_gen = lazy_function(Z, gXtest.value)
_cost = lazy_function(inputs, disp_costs.values(),
on_unused_input='ignore')
if args.encode:
enc_feats = f_encoder.feats(X)
enc_preds = f_encoder.encoder.preds(enc_feats).value
_enc = lazy_function(X_enc_input, enc_preds)
enc_recon_outs = [o.value for o in dist.logits_to_recon(enc_preds)]
_enc_recon = lazy_function(X_enc_input, enc_recon_outs)
_enc_sample = lazy_function(X_enc_input,
[o.value for o in dist.logits_to_sample(enc_preds)])
_enc_l2distable = lazy_function(X_enc_input, dist.l2distable(enc_preds))
_enc_feats = lazy_function(X_enc_input, enc_feats.value)
if args.classifier:
enc_label_preds = f_encoder.labeler.preds(enc_feats)
_enc_preds = lazy_function([enc_feats.value],
enc_label_preds.value)
def batch_map(f, X, nbatch=args.batch_size, wraparound=False):
""" wraparound=True makes sure all batches have exactly nbatch items,
wrapping around to the beginning to grab enough extras to fill the
last batch, if needed."""
def is_ndarray_like(x):
if issubclass(type(x), np.ndarray):
return True
try:
x_array = np.array(x)
return x_array.shape == x.shape
except:
return False
def concat(*args):
if any(isinstance(a, np.ndarray) for a in args):
return np.concatenate(args, axis=0)
out = []
for a in args:
out += list(a)
return out
if isinstance(X, np.ndarray):
X = [X]
assert len(X) > 0
n = len(X[0])
for x in X:
assert len(x) == n
out = None
f_returns_ndarray = None
for start in xrange(0, n, nbatch):
end = min(start + nbatch, n)
inputs = [x[start:end] for x in X]
if wraparound:
assert len(inputs[0]) > 0
while len(inputs[0]) < nbatch:
num_left = nbatch - len(inputs[0])
inputs = [concat(i, x[:num_left]) for i, x in zip(inputs, X)]
batch = f(*inputs)
if f_returns_ndarray is None:
f_returns_ndarray = is_ndarray_like(batch)
if f_returns_ndarray:
batch = [batch]
if out is None:
out = [np.zeros((n,) + b.shape[1:], dtype=b.dtype) for b in batch]
num = end - start
for o, b in zip(out, batch):
o[start:end, ...] = b[:num]
if f_returns_ndarray:
return out[0]
return out
total_niter = niter + niter_decay
start_epoch = 0 if (args.resume is None) else args.resume
total_niter = max(total_niter, start_epoch) # at least run an eval
image_bytes = nc * args.crop_size * args.crop_size * 4
# we'll create 16 megabatches (1x val data, 5x train data, 10x gen data)
gigabyte = 1024 ** 3
max_memory_per_megabatch = args.megabatch_gb * gigabyte
max_images_per_megabatch = args.megabatch_images
megabatch_size = min(max_images_per_megabatch,
int(max_memory_per_megabatch / float(image_bytes)))
num_val = args.num_val_megabatch * megabatch_size
print 'Getting %d val data' % num_val
vaXImages, vaY = dataset.val_provider.get_data(num_val)
if len(vaXImages) > 1:
vaXBigImages, vaXImages = vaXImages
else:
vaXBigImages = vaXImages = vaXImages[0]
num_train = args.num_train_megabatch * megabatch_size
print 'Getting %d train data' % num_train
trXImages, trY = dataset.train_provider.get_data(num_train)
if len(trXImages) > 1:
trXBigImages, trXImages = trXImages
else:
trXBigImages = trXImages = trXImages[0]
print 'Getting samples'
grid_shape = ny, dataset.num_vis_samples
tr_idxs = np.arange(len(trY))
sample_inds = [py_rng.sample(tr_idxs[trY==y], dataset.num_vis_samples)
for y in xrange(ny)]
trXVisRaw = np.asarray([[trXImages[i] for i in sample_inds[y]]
for y in xrange(ny)]).reshape(
-1, nc, args.crop_resize, args.crop_resize)
trXVis = inverse_transform(transform(trXVisRaw))
dataset.grid_vis(trXVis, grid_shape, '%s/real.png' % (samples_dir,))
if args.crop_size == args.crop_resize:
trXBigVisRaw = trXVisRaw
else:
trXBigVisRaw = np.asarray([[trXBigImages[i] for i in sample_inds[y]]
for y in xrange(ny)]).reshape(-1, nc, crop, crop)
trXBigVis = inverse_transform(transform(trXBigVisRaw, crop=crop), crop=crop)
dataset.grid_vis(trXBigVis, grid_shape, '%s/real_big.png' % (samples_dir,))
print 'Done. Training...'
def flat(X):
return X.reshape(len(X), -1)
mega_num_samples = args.num_sample_megabatch * megabatch_size
eval_gen_z = dist.sample(num=mega_num_samples)
gY = np.asarray(np_rng.randint(0, ny, mega_num_samples),
dtype=np.int32).flatten()
eval_gen_inputs = list(eval_gen_z)
target_num_samples = args.disp_samples
num_sample_rows = 10
num_sample_cols = max(1, target_num_samples // num_sample_rows)
num_samples = num_sample_rows * num_sample_cols
assert mega_num_samples >= num_samples
sample_z = list(eval_gen_z)
sample_y = np.array([[i] * num_sample_cols for i in range(ny)],
dtype=np.int32).flatten()
sample_inputs = list(sample_z)
sample_inputs = [z[:num_samples] for z in sample_inputs]
def eval_and_disp(epoch, costs, ng=(10 * megabatch_size)):
start_time = time()
kwargs = dict(metric='euclidean')
cost_string = ' '.join('%s: %.4f' % o
for o in zip(disp_costs.keys(), costs))
print '%*d) %s' % (len('%d'%total_niter), epoch, cost_string)
outs = OrderedDict()
_feats = {}
def _get_feats(f, x):
key = f, id(x)
if key not in _feats:
_feats[key] = batch_map(f, x)
return _feats[key]
def _nnc(inputs, labels, f=None):
assert len(inputs) == len(labels) == 2
if f is not None:
inputs = (_get_feats(f, x) for x in inputs)
(vaX, trX), (vaY, trY) = inputs, labels
return nnc_score(flat(trX), trY, flat(vaX), vaY, **kwargs)
gX = flat(batch_map(_gen, eval_gen_inputs, wraparound=True))
nnd_sizes = [100, 10, 1]
nndVaXImages = flat(transform(vaXImages))
for subsample in nnd_sizes:
size = ng // subsample
gXsubset = gX[:size]
suffix = '' if (subsample == 1) else '/%d' % subsample
outs['NND' + suffix] = nnd_score(gXsubset, nndVaXImages, **kwargs)
labels = vaY, trY
images = vaXImages, trXImages
big_images = vaXBigImages, trXBigImages
if args.encode:
outs['NNC_e'] = _nnc(big_images, labels, f=_enc_l2distable)
outs['NNC_e-'] = _nnc(big_images, labels, f=_enc_feats)
if f_discrim is not None:
outs['NNC_d'] = _nnc(images, labels, f=_discrim_feats)
if args.classifier:
def accuracy(func, feat, Y):
return 100 * (batch_map(func, feat).argmax(axis=1) == Y).mean()
if args.encode:
f = _get_feats(_enc_feats, big_images[0])
outs['CLS_e-'] = accuracy(_enc_preds, f, vaY)
if f_discrim is not None:
f = _get_feats(_discrim_feats, images[0])
outs['CLS_d'] = accuracy(_discrim_preds, f, vaY)
if args.encode:
def image_recon_error(enc_inputs, recon_sized_inputs=None):
def l2err(a, b, axis):
return ((a - b) ** 2).sum(axis=axis) ** 0.5
def _f_error(enc_inputs, recon_sized_inputs):
gen_input = _enc_recon(enc_inputs)
recon = _gen(*gen_input)
if isinstance(recon_sized_inputs, list):
recon_sized_inputs = recon_sized_inputs[0]
inputs = transform(recon_sized_inputs, crop=args.crop_resize)
axis = tuple(range(1, inputs.ndim))
error = l2err(inputs, recon, axis=axis).reshape(-1, 1)
assert len(inputs) > 1
shifted_inputs = np.concatenate([inputs[1:], inputs[:1]], axis=0)
base_error = l2err(shifted_inputs, recon, axis=axis).reshape(-1, 1)
return np.concatenate([error, base_error], axis=1)
if recon_sized_inputs is None:
recon_sized_inputs = enc_inputs
errors = batch_map(_f_error, [enc_inputs, recon_sized_inputs],
wraparound=True)
return errors.mean(axis=0)
outs['EGr'], outs['EGr_b'] = image_recon_error(big_images[0], images[0])
if args.crop_size == args.crop_resize:
outs['EGg'], outs['EGg_b'] = image_recon_error(gen_output_to_enc_input(gX))
def format_str(key):
def is_prop(key, prop_metrics=['NNC', 'CLS']):
return any(key.startswith(m) for m in prop_metrics)
return '%s: %.2f' + ('%%' if is_prop(key) else '')
print ' '.join(format_str(k) % (k, v)
for k, v in outs.iteritems())
samples = batch_map(_gen, sample_inputs, wraparound=True)
sample_shape = num_sample_rows, num_sample_cols
def imname(tag=None):
tag = '' if (tag is None) else (tag + '.')
return '%s/%d.%spng' % (samples_dir, epoch, tag)
dataset.grid_vis(inverse_transform(samples), sample_shape, imname())
if args.encode:
if args.crop_size == args.crop_resize:
# pass the generator's samples back through encoder;
# then pass codes back through generator
enc_gen_inputs = gen_output_to_enc_input(samples)
samples_enc = batch_map(_enc_recon, enc_gen_inputs, wraparound=True)
samples_regen = batch_map(_gen, samples_enc, wraparound=True)
dataset.grid_vis(inverse_transform(samples_regen), sample_shape,
imname('regen'))
assert trXVisRaw.dtype == np.uint8
for func, name in [(_enc_recon, 'real_regen'), (_enc_sample, 'real_regen_s')]:
real_enc = batch_map(func, trXBigVisRaw, wraparound=True)
real_regen = batch_map(_gen, real_enc, wraparound=True)
dataset.grid_vis(inverse_transform(real_regen), grid_shape, imname(name))
eval_time = time() - start_time
sys.stdout.write('Eval done. (%f seconds)\n' % eval_time)
param_groups = dict(
discrim=discrim_params,
joint_discrim=joint_discrim_params,
gen=gen_params,
encode=encode_params,
)
def save_params(epoch, groups=param_groups):
for key, param_list in groups.iteritems():
if len(param_list) == 0: continue
path = '%s/%d_%s_params.jl' % (model_dir, epoch, key)
joblib.dump([p.get_value() for p in param_list], path)
def load_params(weight_prefix=None, resume_epoch=None, groups=param_groups):
if resume_epoch is not None:
assert weight_prefix is None
weight_prefix = '%s/%d' % (model_dir, resume_epoch)
assert weight_prefix is not None
for key, param_list in groups.iteritems():
if len(param_list) == 0: continue
path = '%s_%s_params.jl' % (weight_prefix, key)
if not os.path.exists(path):
raise IOError('param file not found: %s' % path)
saved_params = joblib.load(path)
if len(saved_params) != len(param_list):
raise ValueError(('different param list lengths: '
'len(saved)=%d != %d=len(params)')
% (len(saved_params), len(param_list)))
print 'Loading %d params from: %s' % (len(param_list), path)
for saved, shared in zip(saved_params, param_list):
if shared.get_value().shape != saved.shape:
raise ValueError(('shape mismatch: '
'saved.shape=%s != %s=shared.shape')
% (shared.get_value().shape, saved.shape))
shared.set_value(saved)
def set_lr(epoch, lr=args.learning_rate,
final_lr=args.final_lr_mult*args.learning_rate):
if epoch < niter: # constant LR
value = lr
else:
assert 0 <= final_lr <= lr
if args.linear_decay:
# compute proportion_complete as (k-1)/n so that last epoch (n-1),
# has non-zero learning rate even if args.final_lr_mult == 0, per
# the default for linear decay.
proportion_complete = (epoch-niter) / float(niter_decay)
value = lr + proportion_complete * (final_lr - lr)
else: # exponential decay
assert final_lr > 0, \
'For exponential decay, final LR must be strictly positive (> 0)'
proportion_complete = (epoch-niter+1) / float(niter_decay)
log_value = np.log(lr) + \
proportion_complete * (np.log(final_lr) - np.log(lr))
value = np.exp(log_value)
lrt.set_value(floatX(value))
def get_batch(deploy=False):
imb, ymb = dataset.train_provider.get_batch()
inputs = [i for i in imb]
if (deploy_label and deploy) or (train_label and not deploy):
inputs += [ymb]
inputs += dist.sample(num=len(inputs[0]))
return inputs
invk = int(args.k ** (-1) + 0.5)
def train_batch(inputs, n_updates):
if update_both:
_train_gd(*inputs)
return
if ((args.k >= 1 and (n_updates % (args.k+1) == 0)) or
(args.k < 1 and (n_updates % (invk+1) != 0))):
_train_g(*inputs)
else:
_train_d(*inputs)
def deploy():
# reset batch norm stat holders before computing stats with _deploy_update
for p, _ in deploy_updates:
p.set_value(0 * p.get_value())
start_time = time()
sys.stdout.write('Running %d deploy update iterations...' % args.deploy_iters)
costs = np.mean([_deploy_update(*get_batch(deploy=True))
for _ in xrange(args.deploy_iters)], axis=0)
deploy_time = time() - start_time
sys.stdout.write('done. (%f seconds)\n' % deploy_time)
return costs
def train():
n_updates = 0
iters_per_epoch = int(np.ceil(dataset.ntrain/float(args.batch_size)))
save_epochs = frozenset([i for i in [niter, total_niter]
if i > start_epoch])
disp_epochs = frozenset(list(save_epochs) +
([] if args.no_disp_one else [1]))
if args.disp_interval is None:
args.disp_interval = total_niter + 1
for epoch in xrange(start_epoch, total_niter + 1):
do_eval = (epoch % args.disp_interval == 0) or (epoch in disp_epochs)
do_save = (epoch in save_epochs) or (
(args.save_interval is not None) and
(epoch > start_epoch) and
(epoch % args.save_interval == 0)
)
if do_eval or do_save: costs = deploy()
if do_save: save_params(epoch)
if do_eval: eval_and_disp(epoch, costs)
if epoch == total_niter:
# on last iteration, only want to eval/disp/save;
# already trained the full total_niter iterations
break
set_lr(epoch)
start_time = time()
for index in xrange(iters_per_epoch):
inputs = get_batch()
train_batch(inputs, n_updates)
n_updates += 1 + update_both
epoch_time = time() - start_time
print 'Epoch %d: %f seconds (LR = %g)' \
% (epoch, epoch_time, lrt.get_value())
if __name__ == '__main__':
if (args.weights is not None) or (args.resume is not None):
load_params(weight_prefix=args.weights, resume_epoch=args.resume)
train()