-
Notifications
You must be signed in to change notification settings - Fork 0
/
classification_convnet.py
435 lines (356 loc) · 15.8 KB
/
classification_convnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import numpy as np
import pickle
import argparse
import os, sys
import sklearn.metrics
import sklearn.utils
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch import FloatTensor
import torchvision
import torchvision.transforms as transforms
np.random.seed(0)
ALPHABET = ['A','C','G','T']
A_TO_INDEX = {xx:ii for ii,xx in enumerate(ALPHABET)} # dict mapping 'A' -> 0, 'C' -> 1, etc.
WCPAIR = {'A':'T',
'T':'A',
'G':'C',
'C':'G'}
opt_params = {
"Cebpb":[64, 24, 64],
"Egr2":[128, 8, 64],
"Esr1":[128, 24, 64],
"Foxj2":[64, 12, 16],
"Foxo1":[64, 8, 64],
"Foxo3":[128, 12, 64],
"Foxo4":[64, 12, 64],
"Foxp1":[32, 24, 64],
"Foxp2":[64, 12, 32],
"Gmeb2":[128, 12, 32],
"Irf2":[64, 12, 16],
"Junb":[128, 24, 32],
"Mecp2":[128, 24, 32],
"Nr2c1":[128, 8, 16],
"Pou3f1":[128, 24, 64],
"Sox14":[128, 12, 32],
"Sp1":[16, 24, 64],
"Tbx3":[128, 24, 32],
"Tcf3":[128, 8, 32],
"Zscan20":[128, 8, 64],
}
def parse_args():
parser = argparse.ArgumentParser(description=__doc__,
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('train', type=os.path.abspath, help='Input file')
parser.add_argument('val', type=os.path.abspath, help='Input file')
parser.add_argument('-o', default='tmp_results.pkl', help='Output pickle with results')
parser.add_argument('--one_array', action='store_true',help='performing trainig and testing on only 1st array type')
group = parser.add_argument_group('Training parameters')
group.add_argument('--nepochs', type=int, default=5, help='Num epochs')
#group.add_argument('--min-epochs', type=int, default=5, help='Min epochs')
# group.add_argument('--max-epochs', type=int, default=25, help='Max epochs')
group.add_argument('--batchsize', type=int, default=64,
help='Batch size')
group.add_argument('--incl-rev-comp',action='store_true',
help='Include the reverse complement strand in training data')
group = parser.add_argument_group('Architecture parameters')
group.add_argument('--motif-detectors', type=int, default=64, help='Number of motif detectors')
group.add_argument('--motif-len', type=int, default=24, help='Motif length')
group.add_argument('--fc-nodes', type=int, default=32, help='Number of nodes in fully connected layer')
group.add_argument('--TF', type =str, default="blah", help="TF name used to specify optimal stuff")
#group.add_argument('--dropout', type=int, default=0.5, help='Probability of zeroing out element in dropout layer')
group = parser.add_argument_group('Sampling correction')
group.add_argument('--sampling', type=str,choices=('undersampling','oversampling',''), default='', help='Sampling correction for imbalanced classes')
group.add_argument('--sampling_factor', type=int, default = 5, help='Factor to over or under sample by')
group.add_argument('--weight_error',action='store_true',help='weight BCEloss by class sizes' )
return parser
def encode_seq(seq, pad=0):
assert set(seq) <= set(ALPHABET), set(seq)
m = np.zeros((4,len(seq)))
for ii, a in enumerate(seq):
m[A_TO_INDEX[a], ii] = 1
if pad:
m = np.hstack((.25*np.ones((4,pad)),m,.25*np.ones((4,pad))))
return m
def revcomp(seq):
'''return the reverse complement of an input sequence'''
assert set(seq) <= set(ALPHABET), set(seq)
return ''.join([WCPAIR[a] for a in seq[::-1]])
def load_data(infile, pad=0, include_reverse_complement=False, sampling="", sampling_factor=5, train=False):
'''Returns sequence encoded in a 4xN matrix, probe intensity'''
with open(infile) as f:
lines = f.readlines()
lines = [x.strip().split('\t') for x in lines] # first col is sequence, second col is intensity
xs = np.array([encode_seq(x[0], pad) for x in lines])
# just looking at the classification problem for now
def one_hot_encoder(x):
if x == 0:
return np.array([1.0,0.0])
else:
return np.array([0.0,1.0])
#ys = np.array([one_hot_encoder(float(x[2])) for x in lines])
ys = np.array([float(x[1]) for x in lines])
mean = np.mean(ys)
sd_thresh = 2.5*np.std(ys) + mean # fuck fuck fuck i fucked this up
new_ys = np.zeros(len(ys))
for i in range(len(ys)):
if ys[i] >= sd_thresh:
new_ys[i] = 1
ys = new_ys
ys = np.array([[one_hot_encoder(float(x)) for x in ys]])
ys = ys[0]
# print(ys)
# print(len(ys))
# print(len(xs))
if include_reverse_complement:
x_revc = np.array([encode_seq(revcomp(x[0]), pad) for x in lines])
xs = np.vstack((xs, x_revc))
ys = np.vstack((ys,ys))
# calculate number of true and false samples, find indices for both
num_true = 0
num_false = 0
false_index = []
true_index = []
for i in range(len(ys)):
if np.array_equal(ys[i,:],np.array([0.0,1.0])):
num_true += 1
true_index.append(i)
else:
num_false +=1
false_index.append(i)
true_xs = xs[true_index,:]
true_ys = ys[true_index,:]
false_xs = xs[false_index,:]
false_ys = ys[false_index,:]
#print("=========Before Sampling========")
#print('Num high binders: {}'.format(len(true_xs)))
# print('Num low binders: {}'.format(len(false_xs)))
if sampling == "undersampling":
num_low_binders = num_true * sampling_factor
low_binders_index = np.random.choice(false_index, num_low_binders)
false_xs = xs[low_binders_index,:]
false_ys = ys[low_binders_index,:]
if sampling == "oversampling":
num_repeats = sampling_factor
true_xs = np.repeat(xs[true_index,:],[num_repeats]*len(xs[true_index,:]),axis=0)
true_ys = np.repeat(ys[true_index,:],[num_repeats]*len(ys[true_index,:]),axis=0)
# print("=========After Sampling========")
#print('Num high binders: {}'.format(len(true_xs)))
# print('Num low binders: {}'.format(len(false_xs)))
xs = np.vstack((true_xs,false_xs))
ys = np.vstack((true_ys,false_ys))
xs, ys = sklearn.utils.shuffle(xs, ys)
if train:
return xs, ys, float(num_false), float(num_true)
else:
return xs, ys
def load_data_one_array(infile, pad=0, include_reverse_complement=False, sampling="", sampling_factor=5, train=False):
'''Returns sequence encoded in a 4xN matrix, probe intensity'''
with open(infile) as f:
lines = f.readlines()
lines = [x.strip().split('\t') for x in lines] # first col is sequence, second col is intensity
xs = np.array([encode_seq(x[0], pad) for x in lines])
# just looking at the classification problem for now
def one_hot_encoder(x):
if x == 0:
return np.array([1.0,0.0])
else:
return np.array([0.0,1.0])
# ys = np.array([one_hot_encoder(float(x[2])) for x in lines])
ys = np.array([float(x[1]) for x in lines])
mean = np.mean(ys)
sd_thresh = 2.5*np.std(ys) + mean #ok so this shit is not normally distributed
# how about instead of taking 4 stds above I take
# print(max(ys))
cutoff = np.where(ys> sd_thresh)
#cutoff = np.where(ys> 60000)
# print(cutoff)
# print(len(cutoff[0]))
new_ys = np.zeros(len(ys))
new_ys[cutoff] = 1
ys = new_ys
ys = np.array([[one_hot_encoder(float(x)) for x in ys]])
ys = ys[0]
# print(ys)
if include_reverse_complement:
x_revc = np.array([encode_seq(revcomp(x[0]), pad) for x in lines])
xs = np.vstack((xs, x_revc))
ys = np.vstack((ys,ys))
# calculate number of true and false samples, find indices for both
num_true = 0
num_false = 0
false_index = []
true_index = []
for i in range(len(ys)):
if np.array_equal(ys[i,:],np.array([0.0,1.0])):
num_true += 1
true_index.append(i)
else:
num_false +=1
false_index.append(i)
# print(num_true)
# print(num_false)
true_xs = xs[true_index,:]
true_ys = ys[true_index,:]
false_xs = xs[false_index,:]
false_ys = ys[false_index,:]
print("=========Before Sampling========")
print('Num high binders: {}'.format(len(true_xs)))
print('Num low binders: {}'.format(len(false_xs)))
if sampling == "undersampling":
num_low_binders = num_true * sampling_factor
low_binders_index = np.random.choice(false_index, num_low_binders)
false_xs = xs[low_binders_index,:]
false_ys = ys[low_binders_index,:]
if sampling == "oversampling":
num_repeats = sampling_factor
true_xs = np.repeat(xs[true_index,:],[num_repeats]*len(xs[true_index,:]),axis=0)
true_ys = np.repeat(ys[true_index,:],[num_repeats]*len(ys[true_index,:]),axis=0)
# print(num_true)
# print(num_false)
print("=========After Sampling========")
print('Num high binders: {}'.format(len(true_xs)))
print('Num low binders: {}'.format(len(false_xs)))
num_true_train = int(np.ceil(0.75*len(true_xs)))
train_true_index = np.random.choice(len(true_xs),num_true_train,replace=False)
val_true_index = np.array([i for i in range(len(true_xs)) if i not in train_true_index])
num_false_train = int(np.ceil(0.75*len(false_xs)))
train_false_index = np.random.choice(len(false_xs),num_false_train,replace=False)
val_false_index = np.array([i for i in range(len(false_xs)) if i not in train_false_index])
train_xs = np.vstack((true_xs[train_true_index,:],false_xs[train_false_index,:]))
train_ys = np.vstack((true_ys[train_true_index,:],false_ys[train_false_index,:]))
val_xs = np.vstack((true_xs[val_true_index,:],false_xs[val_false_index,:]))
val_ys = np.vstack((true_ys[val_true_index,:],false_ys[val_false_index,:]))
train_xs, train_ys = sklearn.utils.shuffle(train_xs, train_ys)
val_xs, val_ys = sklearn.utils.shuffle(val_xs, val_ys)
print("=========After Train/Test Split========")
print('Num train: {}'.format(len(train_xs)))
print('Num test: {}'.format(len(val_xs)))
# return train_xs, train_ys, val_xs, val_ys
if train:
return train_xs, train_ys, val_xs, val_ys, float(num_false), float(num_true)
else:
return train_xs, train_ys, val_xs, val_ys
def split_batches(data, batchsize):
'''
Break up data into batches
Inputs:
data (list): input data (list of datapoints given by load_data())
batchsize (int): size of each batch
Output:
Chunked data (list)
'''
nbatches = int(np.ceil(len(data)/float(batchsize)))
batches = []
for i in range(nbatches):
batches.append(data[i*batchsize:(i+1)*batchsize])
return batches
class Model(nn.Module):
def __init__(self,motif_detectors, motif_len, fc_nodes):
#def __init__(self,motif_detectors=64, motif_len=8, fc_nodes=16):
super(Model, self).__init__()
self.conv = nn.Conv1d(4, motif_detectors, motif_len)
self.fc = nn.Linear(motif_detectors,fc_nodes)
#self.dropout = nn.Dropout(dropout)
self.output = nn.Linear(fc_nodes,2)
# self.conv = nn.Conv1d(4, 16, 8) # dropping down kernel size from 24 to 8
#self.fc = nn.Linear(16,32)
#self.output = nn.Linear(32, 2)
def forward(self, x):
x = self.conv(x)
x = F.relu(x)
x = x.max(dim=2)[0] # max returns (max_values, max_indices)
x = x.view(x.size(0), -1)
x = self.fc(x)
x = self.output(x)
# could include dropout here if I want to
x = F.softmax(x)
return x
def main(args):
epochs = args.nepochs
if args.one_array:
xdata, ydata, xval, yval, num_low, num_high = load_data_one_array(args.train, opt_params[args.TF][1]-1, args.incl_rev_comp, args.sampling, args.sampling_factor, True)
xbatched = split_batches(xdata,args.batchsize)
ybatched = split_batches(ydata,args.batchsize)
# if this doesn't work, will see how adding rev comp affects
# xval, yval = load_data(args.val, args.motif_len-1)
else:
xdata, ydata, num_low, num_high = load_data(args.train, opt_params[args.TF][1]-1, args.incl_rev_comp, args.sampling, args.sampling_factor, True)
xbatched = split_batches(xdata,args.batchsize)
ybatched = split_batches(ydata,args.batchsize)
# if this doesn't work, will see how adding rev comp affects
xval, yval = load_data(args.val, opt_params[args.TF][1]-1)
model = Model(opt_params[args.TF][0],opt_params[args.TF][1],opt_params[args.TF][2])
#weights = FloatTensor(np.array([(num_low + num_high)/(num_low), (num_low + num_high)/(num_high)])) # need to reverse this
#print("=====Class Weights=====")
#print(weights)
# BCELoss = nn.BCELoss(weight = weights)
if args.weight_error:
weights = FloatTensor(np.array([(num_low + num_high)/(num_low), (num_low + num_high)/(num_high)]))
BCELoss = nn.BCELoss(weight = weights)
else:
BCELoss = nn.BCELoss()
opt = optim.Adam(lr=0.001,weight_decay=0.001, params=model.parameters())
for epoch in range(epochs):
xdata, ydata = sklearn.utils.shuffle(xdata, ydata)
xbatched = split_batches(xdata, args.batchsize)
ybatched = split_batches(ydata, args.batchsize)
for x, y in zip(xbatched,ybatched):
model.zero_grad()
sequences = Variable(FloatTensor(x))
y = Variable(FloatTensor(y))
pred = model(sequences)
loss = BCELoss(pred, y)
loss.backward()
opt.step()
# switch to model.eval()? how to unswitch
xval_ = Variable(FloatTensor(xval))
yval_ = Variable(FloatTensor(yval))
loss = BCELoss(model(xval_),yval_)
print('Epoch {}, Validation BCE={}'.format(epoch, loss.data[0]))
model.eval()
print('Training Performance')
pred = model(Variable(FloatTensor(xdata)))
#print(pred)
loss = BCELoss(pred, Variable(FloatTensor(ydata)))
print('BCE: {}'.format(loss.data[0]))
results = {'train.actual': ydata,
'train.pred': pred.data.numpy()}
# train_preds = []
# train_actual = []
# for i in range(len(results['train.pred'])):
# train_preds.append(np.argmax(np.rint(results['train.pred'][i])))
# train_actual.append(np.argmax(np.rint(results['train.actual'][i])))
# print('Predicted binders: {}'.format(np.sum(np.array(train_preds))))
# print('Actual binders: {}'.format(np.sum(np.array(train_actual))))
# train_AUC = sklearn.metrics.roc_auc_score(np.array(train_preds),np.array(train_actual))
# train_AP = sklearn.metrics.average_precision_score(np.array(train_preds),np.array(train_actual))
# print('AUC: {}'.format(train_AUC))
# print('AP: {}'.format(train_AP))
print('Validation Performance')
pred = model(Variable(FloatTensor(xval)))
loss = BCELoss(pred, Variable(FloatTensor(yval)))
print('BCE: {}'.format(loss.data[0]))
results['val.actual'] = yval
results['val.pred'] = pred.data.numpy()
# val_preds = []
# val_actual = []
# for i in range(len(results['val.pred'])):
# val_preds.append(np.argmax(np.rint(results['val.pred'][i])))
# val_actual.append(np.argmax(np.rint(results['val.actual'][i])))
# print('Predicted binders: {}'.format(np.sum(np.array(val_preds))))
# print('Actual binders: {}'.format(np.sum(np.array(val_actual))))
# val_AUC = sklearn.metrics.roc_auc_score(np.array(val_preds),np.array(val_actual))
# val_AP = sklearn.metrics.average_precision_score(np.array(val_preds), np.array(val_actual))
# print('AUC: {}'.format(val_AUC))
# print('AP: {}'.format(val_AP))
results['provenance'] = sys.argv
results['epochs'] = epoch
with open(args.o,'wb') as f:
pickle.dump(results,f)
pickle.dump(model.state_dict(),f)
## Need precision recall to do precision recall
if __name__ == '__main__':
main(parse_args().parse_args())