forked from bchidamb/Jess-s_Angels
-
Notifications
You must be signed in to change notification settings - Fork 1
/
test-ae-rbm.py
122 lines (101 loc) · 4.28 KB
/
test-ae-rbm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
from rbm import RBM
from au import AutoEncoder
import tensorflow as tf
import input_data
from utilsnn import show_image, min_max_scale
import matplotlib.pyplot as plt
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('data_dir', '/tmp/data/', 'Directory for storing data')
flags.DEFINE_integer('epochs', 50, 'The number of training epochs')
flags.DEFINE_integer('batchsize', 30, 'The batch size')
flags.DEFINE_boolean('restore_rbm', False, 'Whether to restore the RBM weights or not.')
# ensure output dir exists
if not os.path.isdir('out'):
os.mkdir('out')
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels
trX, teY = min_max_scale(trX, teX)
# RBMs
rbmobject1 = RBM(784, 900, ['rbmw1', 'rbvb1', 'rbmhb1'], 0.3)
rbmobject2 = RBM(900, 500, ['rbmw2', 'rbvb2', 'rbmhb2'], 0.3)
rbmobject3 = RBM(500, 250, ['rbmw3', 'rbvb3', 'rbmhb3'], 0.3)
rbmobject4 = RBM(250, 2, ['rbmw4', 'rbvb4', 'rbmhb4'], 0.3)
if FLAGS.restore_rbm:
rbmobject1.restore_weights('./out/rbmw1.chp')
rbmobject2.restore_weights('./out/rbmw2.chp')
rbmobject3.restore_weights('./out/rbmw3.chp')
rbmobject4.restore_weights('./out/rbmw4.chp')
# Autoencoder
autoencoder = AutoEncoder(784, [900, 500, 250, 2], [['rbmw1', 'rbmhb1'],
['rbmw2', 'rbmhb2'],
['rbmw3', 'rbmhb3'],
['rbmw4', 'rbmhb4']], tied_weights=False)
iterations = len(trX) / FLAGS.batchsize
# Train First RBM
print('first rbm')
for i in range(FLAGS.epochs):
for j in range(iterations):
batch_xs, batch_ys = mnist.train.next_batch(FLAGS.batchsize)
rbmobject1.partial_fit(batch_xs)
print(rbmobject1.compute_cost(trX))
show_image("out/1rbm.jpg", rbmobject1.n_w, (28, 28), (30, 30))
rbmobject1.save_weights('./out/rbmw1.chp')
# Train Second RBM2
print('second rbm')
for i in range(FLAGS.epochs):
for j in range(iterations):
batch_xs, batch_ys = mnist.train.next_batch(FLAGS.batchsize)
# Transform features with first rbm for second rbm
batch_xs = rbmobject1.transform(batch_xs)
rbmobject2.partial_fit(batch_xs)
print(rbmobject2.compute_cost(rbmobject1.transform(trX)))
show_image("out/2rbm.jpg", rbmobject2.n_w, (30, 30), (25, 20))
rbmobject2.save_weights('./out/rbmw2.chp')
# Train Third RBM
print('third rbm')
for i in range(FLAGS.epochs):
for j in range(iterations):
# Transform features
batch_xs, batch_ys = mnist.train.next_batch(FLAGS.batchsize)
batch_xs = rbmobject1.transform(batch_xs)
batch_xs = rbmobject2.transform(batch_xs)
rbmobject3.partial_fit(batch_xs)
print(rbmobject3.compute_cost(rbmobject2.transform(rbmobject1.transform(trX))))
show_image("out/3rbm.jpg", rbmobject3.n_w, (25, 20), (25, 10))
rbmobject3.save_weights('./out/rbmw3.chp')
# Train Third RBM
print('fourth rbm')
for i in range(FLAGS.epochs):
for j in range(iterations):
batch_xs, batch_ys = mnist.train.next_batch(FLAGS.batchsize)
# Transform features
batch_xs = rbmobject1.transform(batch_xs)
batch_xs = rbmobject2.transform(batch_xs)
batch_xs = rbmobject3.transform(batch_xs)
rbmobject4.partial_fit(batch_xs)
print(rbmobject4.compute_cost(rbmobject3.transform(rbmobject2.transform(rbmobject1.transform(trX)))))
rbmobject4.save_weights('./out/rbmw4.chp')
# Load RBM weights to Autoencoder
autoencoder.load_rbm_weights('./out/rbmw1.chp', ['rbmw1', 'rbmhb1'], 0)
autoencoder.load_rbm_weights('./out/rbmw2.chp', ['rbmw2', 'rbmhb2'], 1)
autoencoder.load_rbm_weights('./out/rbmw3.chp', ['rbmw3', 'rbmhb3'], 2)
autoencoder.load_rbm_weights('./out/rbmw4.chp', ['rbmw4', 'rbmhb4'], 3)
# Train Autoencoder
print('autoencoder')
for i in range(FLAGS.epochs):
cost = 0.0
for j in range(iterations):
batch_xs, batch_ys = mnist.train.next_batch(FLAGS.batchsize)
cost += autoencoder.partial_fit(batch_xs)
print(cost)
autoencoder.save_weights('./out/au.chp')
autoencoder.load_weights('./out/au.chp')
fig, ax = plt.subplots()
print(autoencoder.transform(teX)[:, 0])
print(autoencoder.transform(teX)[:, 1])
plt.scatter(autoencoder.transform(teX)[:, 0], autoencoder.transform(teX)[:, 1], alpha=0.5)
plt.show()
raw_input("Press Enter to continue...")
plt.savefig('out/myfig')