diff --git a/implementations/stdlib_rationals.v b/implementations/stdlib_rationals.v index 142e568..8a5d097 100644 --- a/implementations/stdlib_rationals.v +++ b/implementations/stdlib_rationals.v @@ -1,6 +1,6 @@ Require MathClasses.implementations.stdlib_binary_integers Coq.setoid_ring.Field Coq.QArith.Qfield MathClasses.theory.rationals . -Require Import +Require Import MathClasses.misc.stdpp_tactics Coq.ZArith.ZArith Coq.setoid_ring.Ring Coq.QArith.QArith_base Coq.QArith.Qabs Coq.QArith.Qpower MathClasses.interfaces.abstract_algebra MathClasses.interfaces.rationals @@ -61,7 +61,7 @@ Program Instance Q_to_fracZ: Cast Q (Frac Z) := λ x, frac (Qnum x) (Zpos (Qden #[global] Instance: Proper ((=) ==> (=)) Q_to_fracZ. -Proof. intros ? ? E. easy. Qed. +Proof. intros ? ? E. done. Qed. #[global] Instance: SemiRing_Morphism Q_to_fracZ. @@ -69,7 +69,7 @@ Proof. repeat (split; try apply _). Qed. #[global] Instance: Injective Q_to_fracZ. -Proof. split; try apply _. intros ? ? E. easy. Qed. +Proof. split; try apply _. intros ? ? E. done. Qed. #[global] Instance: RationalsToFrac Q := rationals.alt_to_frac Q_to_fracZ. @@ -92,7 +92,7 @@ Proof. exact Qle_antisym. apply (rings.from_ring_order (Rle:=Q_le)). repeat (split; try apply _). - intros. apply Qplus_le_compat. now apply Qle_refl. easy. + intros. apply Qplus_le_compat. now apply Qle_refl. done. intros. now apply Qmult_le_0_compat. Qed. @@ -110,7 +110,7 @@ Proof. rapply (semirings.dec_full_pseudo_srorder (R:=Q)). split. intro. split. now apply Zorder.Zlt_le_weak. now apply Zorder.Zlt_not_eq. - intros [E1 E2]. destruct (Zorder.Zle_lt_or_eq _ _ E1). easy. now destruct E2. + intros [E1 E2]. destruct (Zorder.Zle_lt_or_eq _ _ E1). done. now destruct E2. Qed. #[global] diff --git a/misc/stdpp_tactics.v b/misc/stdpp_tactics.v index 6d095a5..b853f1d 100644 --- a/misc/stdpp_tactics.v +++ b/misc/stdpp_tactics.v @@ -1,10 +1,8 @@ +Require Import MathClasses.misc.util. From Coq Require Export RelationClasses Relation_Definitions Lia. Module FastDoneTactic. -Lemma not_symmetry {A} `{R : relation A, !Symmetric R} x y : ~ R x y -> ~ R y x. -Proof. intuition. Qed. - Ltac fast_done := solve [ eassumption