-
Notifications
You must be signed in to change notification settings - Fork 9
/
test_file.Rmd
30 lines (24 loc) · 1.02 KB
/
test_file.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
---
title: "Test doc"
author: "Corey Sparks"
date: "2/17/2022"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
**Different distributions have different link functions....**
| Distribution | Mean | Variance| Link Function | Range of Outcome |
|:------------:|:----------------:|:----------------:|:----------------:|:----------------:|
| Gaussian | $\mu$ |$\sigma^2$ | Identity | $-\infty , \infty$ |
| Binomial | $\pi$ | $n\pi(1-\pi)$ | $log \left (\frac{\pi}{1-\pi} \right )$ | $\frac{0,1,2,...n}{n}$ |
| Poisson | $\lambda$ | $\lambda$ | $log (\lambda)$ | $(0,1,2,...)$ |
| Gamma | $\mu$ | $\phi \mu^2$ | $log (\mu)$ | $(0, \infty)$ |
| Negative Binomial | $n(1-p)/p$ | $n(1-p)/p^2$ | $log (\mu)$ | $(0,1,2,...)$ |
| Student-t | $\mu$ | $\frac{\sigma^2 \nu}{\nu-2}$| Identity | $-\infty , \infty$ |
$$
f(y) = 1/(2\sigma*sqrt(2* \pi))
$$
if
$$y= \mu = 1-exp(-(((x- \mu)/ \sigma)^2)/2))/(sqrt(2*\pi)*\sigma*((x-\mu)/\sigma)^2) if y!= \mu
$$