From ee2bd1bb0479bf7eb40407a37bd91005798f8e31 Mon Sep 17 00:00:00 2001 From: Julia Nemeth Date: Mon, 14 Feb 2022 15:07:39 +0100 Subject: [PATCH] feat: Modify `README.md` --- README.md | 35 ++++++++++++++++++++++++++++++----- 1 file changed, 30 insertions(+), 5 deletions(-) diff --git a/README.md b/README.md index 747ef9a..fff6b24 100644 --- a/README.md +++ b/README.md @@ -8,7 +8,7 @@ add "ssh://git@github.com/cursorinsight/FeatureScreeningDemo.jl"#master ``` ### Set up for non-julia users -Install Julia v >= 1.6.0. You can install it with [asdf](https://asdf-vm.com/). +Install Julia >= v1.6.0. You can install it with [asdf](https://asdf-vm.com/). Clone the project ```bash @@ -33,9 +33,33 @@ $ sudo apt install hdf5-tools ``` ## Usage -This application demonstrates the usage and usefulness of our feature screening -method. You can run a complete `demo` to test all functionality, run some -`benchmark` to measure your feature set or `screen` you feature set. +This application demonstrates the usage and usefulness of our random-forest +based feature screening method. You can run a complete `demo` to test all +functionality with random feature sets, run `benchmark` to measure your data set +accuracy or `screen` you feature set to get a reduced one. + +### Generate synthetic data +You can use our +[BiometricBlender](https://github.com/cursorinsight/biometricblender) to +generate synthetic data. You can find more information its project `README.md`. +To test the funcionallity you can generate a data set with the following +parameters: + +```bash +python -m biometric_blender \ + --n-labels 100 \ + --n-samples-per-label 64 \ + --n-true-features 100 \ + --n-fake-features 300 \ + --min-usefulness 0.5 \ + --max-usefulness 1 \ + --location-sharing-extent 100 \ + --location-ordering-extent 50 \ + --n-features-out 10000 \ + --blending-mode logarithmic \ + --min-count 4 \ + --max-count 8 +``` ### Create a random feature dataset If you don't have a valid dataset to test the features, you can generate random @@ -86,7 +110,8 @@ If you don't have valid dataset, you can generate random training feature set. You can find the steps for that under `Create random feature dataset` heading. ### `screen` command -This command screens the given feature set and generate a screened one. +This command screens the given feature set and splits that into a train and a +test data. Usage: ```bash