-
Notifications
You must be signed in to change notification settings - Fork 3
/
SMAOffsetV2.py
120 lines (92 loc) · 3.88 KB
/
SMAOffsetV2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# --- Do not remove these libs ---
from freqtrade.strategy import IStrategy, merge_informative_pair
from typing import Dict, List
from functools import reduce
from pandas import DataFrame
# --------------------------------
import talib.abstract as ta
from datetime import datetime, timedelta
from freqtrade.persistence import Trade
# thanks tirail for original SMAOffset sharing
# added trend detection and stoploss
class SMAOffsetV2(IStrategy):
minimal_roi = {
"0": 1,
}
stoploss = -0.20
timeframe = '5m'
informative_timeframe = '1h'
use_sell_signal = True
sell_profit_only = False
process_only_new_candles = True
use_custom_stoploss = True
startup_candle_count = 200
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
if current_time - timedelta(minutes=40) > trade.open_date_utc and current_profit < -0.1:
return -0.01
return -0.99
def informative_pairs(self):
pairs = self.dp.current_whitelist()
informative_pairs = [(pair, self.informative_timeframe) for pair in pairs]
return informative_pairs
@staticmethod
def get_informative_indicators(dataframe: DataFrame, metadata: dict):
dataframe['ema_fast'] = ta.EMA(dataframe, timeperiod=20)
dataframe['ema_slow'] = ta.EMA(dataframe, timeperiod=25)
dataframe['go_long'] = (
(dataframe['ema_fast'] > dataframe['ema_slow'])
).astype('int') * 2
return dataframe
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
if not self.dp:
return dataframe
informative = self.dp.get_pair_dataframe(pair=metadata['pair'], timeframe=self.informative_timeframe)
informative = self.get_informative_indicators(informative.copy(), metadata)
dataframe = merge_informative_pair(dataframe, informative, self.timeframe, self.informative_timeframe,
ffill=True)
# don't overwrite the base dataframe's HLCV information
skip_columns = [(s + "_" + self.informative_timeframe) for s in
['date', 'open', 'high', 'low', 'close', 'volume']]
dataframe.rename(
columns=lambda s: s.replace("_{}".format(self.informative_timeframe), "") if (not s in skip_columns) else s,
inplace=True)
# ---------------------------------------------------------------------------------
sma_offset = (1 - 0.04)
sma_offset_pos = (1 + 0.012)
base_nb_candles = 20
dataframe['sma_30_offset'] = ta.SMA(dataframe, timeperiod=base_nb_candles) * sma_offset
dataframe['sma_30_offset_pos'] = ta.SMA(dataframe, timeperiod=base_nb_candles) * sma_offset_pos
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(dataframe['go_long'] > 0)
&
(dataframe['close'] < dataframe['sma_30_offset'])
&
(dataframe['volume'] > 0)
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(
(dataframe['go_long'] == 0)
|
(dataframe['close'] > dataframe['sma_30_offset_pos'])
)
&
(dataframe['volume'] > 0)
),
'sell'] = 1
return dataframe
plot_config = {
'main_plot': {
'sma_30_offset': {'color': 'orange'},
'sma_30_offset_pos': {'color': 'orange'},
'ema_fast': {'color': 'blue'},
'ema_slow': {'color': 'green'},
},
}