-
Notifications
You must be signed in to change notification settings - Fork 10
/
matcher.py
340 lines (288 loc) · 11.6 KB
/
matcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
from __future__ import division
import string
from nltk.translate.bleu_score import sentence_bleu
from nltk.corpus import stopwords
from copy import copy
import ipdb
class Matcher:
@staticmethod
def bowMatch(ref, ex, ignoreStopwords, ignoreCase):
"""
A binary function testing for exact lexical match (ignoring ordering) between reference
and predicted extraction
"""
s1 = ref.bow()
s2 = ex.bow()
if ignoreCase:
s1 = s1.lower()
s2 = s2.lower()
s1Words = s1.split(' ')
s2Words = s2.split(' ')
if ignoreStopwords:
s1Words = Matcher.removeStopwords(s1Words)
s2Words = Matcher.removeStopwords(s2Words)
return sorted(s1Words) == sorted(s2Words)
@staticmethod
def predMatch(ref, ex, ignoreStopwords, ignoreCase):
"""
Return whehter gold and predicted extractions agree on the predicate
"""
s1 = ref.elementToStr(ref.pred)
s2 = ex.elementToStr(ex.pred)
if ignoreCase:
s1 = s1.lower()
s2 = s2.lower()
s1Words = s1.split(' ')
s2Words = s2.split(' ')
if ignoreStopwords:
s1Words = Matcher.removeStopwords(s1Words)
s2Words = Matcher.removeStopwords(s2Words)
return s1Words == s2Words
@staticmethod
def argMatch(ref, ex, ignoreStopwords, ignoreCase):
"""
Return whehter gold and predicted extractions agree on the arguments
"""
sRef = ' '.join([ref.elementToStr(elem) for elem in ref.args])
sEx = ' '.join([ex.elementToStr(elem) for elem in ex.args])
count = 0
for w1 in sRef:
for w2 in sEx:
if w1 == w2:
count += 1
# We check how well does the extraction lexically cover the reference
# Note: this is somewhat lenient as it doesn't penalize the extraction for
# being too long
coverage = float(count) / len(sRef)
return coverage > Matcher.LEXICAL_THRESHOLD
@staticmethod
def bleuMatch(ref, ex, ignoreStopwords, ignoreCase):
sRef = ref.bow()
sEx = ex.bow()
bleu = sentence_bleu(references = [sRef.split(' ')], hypothesis = sEx.split(' '))
return bleu > Matcher.BLEU_THRESHOLD
@staticmethod
def lexicalMatch(ref, ex, ignoreStopwords, ignoreCase):
sRef = ref.bow().split(' ')
sEx = ex.bow().split(' ')
count = 0
#for w1 in sRef:
# if w1 in sEx:
# count += 1
# sEx.remove(w1)
for w1 in sRef:
for w2 in sEx:
if w1 == w2:
count += 1
# We check how well does the extraction lexically cover the reference
# Note: this is somewhat lenient as it doesn't penalize the extraction for
# being too long
coverage = float(count) / len(sRef)
return coverage > Matcher.LEXICAL_THRESHOLD
@staticmethod
def tuple_match(ref, ex, ignoreStopwords, ignoreCase):
precision = [0, 0] # 0 out of 0 predicted words match
recall = [0, 0] # 0 out of 0 reference words match
# If, for each part, any word is the same as a reference word, then it's a match.
predicted_words = ex.pred.split()
gold_words = ref.pred.split()
precision[1] += len(predicted_words)
recall[1] += len(gold_words)
# matching_words = sum(1 for w in predicted_words if w in gold_words)
matching_words = 0
for w in gold_words:
if w in predicted_words:
matching_words += 1
predicted_words.remove(w)
if matching_words == 0:
return False # t <-> gt is not a match
precision[0] += matching_words
recall[0] += matching_words
for i in range(len(ref.args)):
gold_words = ref.args[i].split()
recall[1] += len(gold_words)
if len(ex.args) <= i:
if i<2:
return False
else:
continue
predicted_words = ex.args[i].split()
precision[1] += len(predicted_words)
matching_words = 0
for w in gold_words:
if w in predicted_words:
matching_words += 1
predicted_words.remove(w)
if matching_words == 0 and i<2:
return False # t <-> gt is not a match
precision[0] += matching_words
# Currently this slightly penalises systems when the reference
# reformulates the sentence words, because the reformulation doesn't
# match the predicted word. It's a one-wrong-word penalty to precision,
# to all systems that correctly extracted the reformulated word.
recall[0] += matching_words
prec = 1.0 * precision[0] / precision[1]
rec = 1.0 * recall[0] / recall[1]
return [prec, rec]
# STRICTER LINIENT MATCH
def linient_tuple_match(ref, ex, ignoreStopwords, ignoreCase):
precision = [0, 0] # 0 out of 0 predicted words match
recall = [0, 0] # 0 out of 0 reference words match
# If, for each part, any word is the same as a reference word, then it's a match.
predicted_words = ex.pred.split()
gold_words = ref.pred.split()
precision[1] += len(predicted_words)
recall[1] += len(gold_words)
# matching_words = sum(1 for w in predicted_words if w in gold_words)
matching_words = 0
for w in gold_words:
if w in predicted_words:
matching_words += 1
predicted_words.remove(w)
# matching 'be' with its different forms
forms_of_be = ["be","is","am","are","was","were","been","being"]
if "be" in predicted_words:
for form in forms_of_be:
if form in gold_words:
matching_words += 1
predicted_words.remove("be")
break
if matching_words == 0:
return [0,0] # t <-> gt is not a match
precision[0] += matching_words
recall[0] += matching_words
for i in range(len(ref.args)):
gold_words = ref.args[i].split()
recall[1] += len(gold_words)
if len(ex.args) <= i:
if i<2:
return [0,0] # changed
else:
continue
predicted_words = ex.args[i].split()
precision[1] += len(predicted_words)
matching_words = 0
for w in gold_words:
if w in predicted_words:
matching_words += 1
predicted_words.remove(w)
precision[0] += matching_words
# Currently this slightly penalises systems when the reference
# reformulates the sentence words, because the reformulation doesn't
# match the predicted word. It's a one-wrong-word penalty to precision,
# to all systems that correctly extracted the reformulated word.
recall[0] += matching_words
if(precision[1] == 0):
prec = 0
else:
prec = 1.0 * precision[0] / precision[1]
if(recall[1] == 0):
rec = 0
else:
rec = 1.0 * recall[0] / recall[1]
return [prec, rec]
@staticmethod
def simple_tuple_match(ref, ex, ignoreStopwords, ignoreCase):
ref.args = [ref.args[0], ' '.join(ref.args[1:])]
ex.args = [ex.args[0], ' '.join(ex.args[1:])]
precision = [0, 0] # 0 out of 0 predicted words match
recall = [0, 0] # 0 out of 0 reference words match
# If, for each part, any word is the same as a reference word, then it's a match.
predicted_words = ex.pred.split()
gold_words = ref.pred.split()
precision[1] += len(predicted_words)
recall[1] += len(gold_words)
matching_words = 0
for w in gold_words:
if w in predicted_words:
matching_words += 1
predicted_words.remove(w)
precision[0] += matching_words
recall[0] += matching_words
for i in range(len(ref.args)):
gold_words = ref.args[i].split()
recall[1] += len(gold_words)
if len(ex.args) <= i:
break
predicted_words = ex.args[i].split()
precision[1] += len(predicted_words)
matching_words = 0
for w in gold_words:
if w in predicted_words:
matching_words += 1
predicted_words.remove(w)
precision[0] += matching_words
# Currently this slightly penalises systems when the reference
# reformulates the sentence words, because the reformulation doesn't
# match the predicted word. It's a one-wrong-word penalty to precision,
# to all systems that correctly extracted the reformulated word.
recall[0] += matching_words
prec = 1.0 * precision[0] / precision[1]
rec = 1.0 * recall[0] / recall[1]
return [prec, rec]
# @staticmethod
# def binary_linient_tuple_match(ref, ex, ignoreStopwords, ignoreCase):
# if len(ref.args)>=2:
# # r = ref.copy()
# r = copy(ref)
# r.args = [ref.args[0], ' '.join(ref.args[1:])]
# else:
# r = ref
# if len(ex.args)>=2:
# # e = ex.copy()
# e = copy(ex)
# e.args = [ex.args[0], ' '.join(ex.args[1:])]
# else:
# e = ex
# return Matcher.linient_tuple_match(r, e, ignoreStopwords, ignoreCase)
@staticmethod
def binary_linient_tuple_match(ref, ex, ignoreStopwords, ignoreCase):
if len(ref.args)>=2:
r = copy(ref)
r.args = [ref.args[0], ' '.join(ref.args[1:])]
else:
r = ref
if len(ex.args)>=2:
e = copy(ex)
e.args = [ex.args[0], ' '.join(ex.args[1:])]
else:
e = ex
stright_match = Matcher.linient_tuple_match(r, e, ignoreStopwords, ignoreCase)
said_type_reln = ["said", "told", "added", "adds", "says", "adds"]
said_type_sentence = False
for said_verb in said_type_reln:
if said_verb in ref.pred:
said_type_sentence = True
break
if not said_type_sentence:
return stright_match
else:
if len(ex.args)>=2:
e = copy(ex)
e.args = [' '.join(ex.args[1:]), ex.args[0]]
else:
e = ex
reverse_match = Matcher.linient_tuple_match(r, e, ignoreStopwords, ignoreCase)
return max(stright_match, reverse_match)
@staticmethod
def binary_tuple_match(ref, ex, ignoreStopwords, ignoreCase):
if len(ref.args)>=2:
# r = ref.copy()
r = copy(ref)
r.args = [ref.args[0], ' '.join(ref.args[1:])]
else:
r = ref
if len(ex.args)>=2:
# e = ex.copy()
e = copy(ex)
e.args = [ex.args[0], ' '.join(ex.args[1:])]
else:
e = ex
return Matcher.tuple_match(r, e, ignoreStopwords, ignoreCase)
@staticmethod
def removeStopwords(ls):
return [w for w in ls if w.lower() not in Matcher.stopwords]
# CONSTANTS
BLEU_THRESHOLD = 0.4
LEXICAL_THRESHOLD = 0.5 # Note: changing this value didn't change the ordering of the tested systems
stopwords = stopwords.words('english') + list(string.punctuation)