-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.py
241 lines (203 loc) · 7.99 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
from ninja_gaiden import NesGymProc
from ninja_gaiden.ninja_env import _make_ninja_gaiden_gym
from dqn.agent import ActorAgent, RunningMeanStd, RewardForwardFilter, _make_train_data
from torch.multiprocessing import Pipe
from tensorboardX import SummaryWriter
import logging
import numpy as np
import torch.nn.functional as F
import torch
import time
import datetime
from collections import deque
if __name__ == '__main__':
# Create dummpy env to see input size etc.
env = _make_ninja_gaiden_gym()
input_size = env.observation_space.shape
output_size = env.action_space.n
logging.info('input size: {}, output size: {}'
.format(input_size, output_size))
env.close()
# env_id = 'SuperMarioBros-v0'
# movement = COMPLEX_MOVEMENT
# env = BinarySpaceToDiscreteSpaceEnv(
# gym_super_mario_bros.make(env_id), movement)
# input_size = env.observation_space.shape # 4
# output_size = env.action_space.n # 2
writer = SummaryWriter()
use_cuda = True
use_gae = True
life_done = True
is_load_model = True
is_training = False
is_render = True
use_standardization = True
use_noisy_net = False
model_path = 'data/{}_{}.model.none'.format(
'ninja-gaiden-v0',
datetime.date.today().isoformat())
load_model_path = 'data/ninja-gaiden-v0_2019-05-18.model.none'
lam = 0.95
num_worker = 1
num_step = 128
ppo_eps = 0.1
epoch = 3
batch_size = 256
max_step = 1.15e8
learning_rate = 0.001
lr_schedule = False
stable_eps = 1e-30
entropy_coef = 0.02
alpha = 0.99
gamma = 0.99
clip_grad_norm = 0.5
# Curiosity param
icm_scale = 10.0
beta = 0.2
eta = 1.0
reward_scale = 1
agent = ActorAgent(
input_size,
output_size,
num_worker,
num_step,
gamma,
learning_rate=learning_rate,
epoch=epoch,
use_cuda=use_cuda,
use_noisy_net=use_noisy_net)
reward_rms = RunningMeanStd()
discounted_reward = RewardForwardFilter(gamma)
if is_load_model:
if use_cuda:
agent.model.load_state_dict(torch.load(load_model_path))
else:
agent.model.load_state_dict(
torch.load(
load_model_path,
map_location='cpu'))
if not is_training:
agent.model.eval()
works = []
parent_conns = []
child_conns = []
for idx in range(num_worker):
parent_conn, child_conn = Pipe()
env = _make_ninja_gaiden_gym()
from gym.wrappers import Monitor
env = Monitor(env, './video', force=True)
work = NesGymProc(env, is_render, idx, child_conn)
work.start()
works.append(work)
parent_conns.append(parent_conn)
child_conns.append(child_conn)
states = np.zeros([num_worker, 4, 84, 84])
sample_episode = 0
sample_rall = 0
sample_i_rall = 0
sample_step = 0
sample_env_idx = 0
global_step = 0
recent_prob = deque(maxlen=10)
while True:
total_state, total_reward, total_done, \
total_next_state, total_action = [], [], [], [], []
global_step += (num_worker * num_step)
for _ in range(num_step):
if not is_training:
time.sleep(0.05)
agent.model.eval()
agent.icm.eval()
actions = agent.get_action(states)
for parent_conn, action in zip(parent_conns, actions):
parent_conn.send(action)
next_states, rewards, dones, real_dones, log_rewards = [], [], [], [], []
for parent_conn in parent_conns:
s, r, d, rd, lr = parent_conn.recv()
next_states.append(s)
rewards.append(r)
dones.append(d)
real_dones.append(rd)
log_rewards.append(lr)
next_states = np.stack(next_states)
rewards = np.hstack(rewards) * reward_scale
dones = np.hstack(dones)
real_dones = np.hstack(real_dones)
# total reward = int reward + ext Resard
intrinsic_reward = agent.compute_intrinsic_reward(
states, next_states, actions)
rewards += intrinsic_reward
total_state.append(states)
total_next_state.append(next_states)
total_reward.append(rewards)
total_done.append(dones)
total_action.append(actions)
states = next_states[:, :, :, :]
sample_rall += log_rewards[sample_env_idx]
sample_i_rall += intrinsic_reward[sample_env_idx]
sample_step += 1
if real_dones[sample_env_idx]:
sample_episode += 1
writer.add_scalar('data/reward', sample_rall, sample_episode)
writer.add_scalar(
'data/i-reward', sample_i_rall, sample_episode)
writer.add_scalar('data/step', sample_step, sample_episode)
sample_rall = 0
sample_i_rall = 0
sample_step = 0
if is_training:
total_state = np.stack(total_state).transpose(
[1, 0, 2, 3, 4]).reshape([-1, 4, 84, 84])
total_next_state = np.stack(total_next_state).transpose(
[1, 0, 2, 3, 4]).reshape([-1, 4, 84, 84])
total_reward = np.stack(total_reward).transpose().reshape([-1])
total_action = np.stack(total_action).transpose().reshape([-1])
total_done = np.stack(total_done).transpose().reshape([-1])
value, next_value, policy = agent.forward_transition(
total_state, total_next_state)
# running mean int reward
total_reward_per_env = np.array([discounted_reward.update(
reward_per_step) for reward_per_step in total_reward.reshape([num_worker, -1]).T])
total_reawrd_per_env = total_reward_per_env.reshape([-1])
mean, std, count = np.mean(total_reward), np.std(
total_reward), len(total_reward)
reward_rms.update_from_moments(mean, std ** 2, count)
# devided reward by running std
total_reward /= np.sqrt(reward_rms.var)
# logging utput to see how convergent it is.
policy = policy.detach()
m = F.softmax(policy, dim=-1)
recent_prob.append(m.max(1)[0].mean().cpu().numpy())
writer.add_scalar(
'data/max_prob',
np.mean(recent_prob),
sample_episode)
total_target = []
total_adv = []
for idx in range(num_worker):
target, adv = _make_train_data(total_reward[idx * num_step:(idx + 1) * num_step],
total_done[idx *
num_step:(idx + 1) * num_step],
value[idx *
num_step:(idx + 1) * num_step],
next_value[idx * num_step:(idx + 1) * num_step], use_gae)
total_target.append(target)
total_adv.append(adv)
if use_standardization:
adv = (adv - adv.mean()) / (adv.std() + stable_eps)
agent.train_model(
total_state,
total_next_state,
np.hstack(total_target),
total_action,
np.hstack(total_adv))
# adjust learning rate
if lr_schedule:
new_learing_rate = learning_rate - \
(global_step / max_step) * learning_rate
for param_group in agent.optimizer.param_groups:
param_group['lr'] = new_learing_rate
writer.add_scalar(
'data/lr', new_learing_rate, sample_episode)
if global_step % (num_worker * num_step * 100) == 0:
torch.save(agent.model.state_dict(), model_path)