forked from richardxia/BLB
-
Notifications
You must be signed in to change notification settings - Fork 1
/
run_openmp_tests.py
163 lines (127 loc) · 3.39 KB
/
run_openmp_tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import csv
import math
import numpy
from blb import *
def mean(sample):
return sum(sample) * 1.0 / len(sample)
def stddev(sample):
mn = mean(sample)
return math.sqrt(sum([(x - mn) * (x - mn) for x in sample]) * 1.0 / (len(sample) - 1))
def variance(sample):
mn = mean(sample)
return stddev(sample) ** 2
c_variance = """
float mean = 0.0;
for( int i=0; i< size; i++ ){
mean += data[ indicies[i] ];
}
mean /= size;
float var = 0.0;
for( int i=0; i<size; i++ ){
float datum = data[ indicies[i] ];
var += pow( datum - mean, 2 );
}
return var / size;
"""
class MeanMean_BLB(BLB):
def compute_estimate(self, sample):
return mean(sample)
def reduce_bootstraps(self, sample):
return mean(sample)
def average(self, sample):
return mean(sample)
class SDMean_BLB(BLB):
def compute_estimate(self, sample):
return mean(sample)
def reduce_bootstraps(self, sample):
return stddev(sample)
def average(self, sample):
return mean(sample)
class MeanSD_BLB(BLB):
def compute_estimate(self, sample):
return stddev(sample)
def reduce_bootstraps(self, sample):
return mean(sample)
def average(self, sample):
return mean(sample)
class SDSD_BLB(BLB):
def compute_estimate(self, sample):
return stddev(sample)
def reduce_bootstraps(self, sample):
return stddev(sample)
def average(self, sample):
return mean(sample)
class CMeanSD_BLB(BLB):
def __init__(self):
self.compute_estimate = 'stdev'
self.reduce_bootstraps = 'mean'
self.average = 'mean'
BLB.__init__(self)
class CMeanMean_BLB(BLB):
def __init__(self):
self.compute_estimate = 'mean'
self.reduce_bootstraps = 'mean'
self.average = 'mean'
BLB.__init__(self)
class CSDMean_BLB(BLB):
def __init__(self):
self.compute_estimate = 'mean'
self.reduce_bootstraps = 'stdev'
self.average = 'mean'
BLB.__init__(self)
class CSDSD_BLB(BLB):
def __init__(self):
self.compute_estimate = 'stdev'
self.reduce_bootstraps = 'stdev'
self.average = 'mean'
BLB.__init__(self)
class MeanVariance_BLB(BLB):
def compute_estimate(self, sample):
return variance(sample)
def reduce_bootstraps(self, sample):
return mean(sample)
def average(self, sample):
return mean(sample)
class CMeanVariance_BLB(BLB):
def __init__(self):
self.compute_estimate = c_variance
self.reduce_bootstraps = 'mean'
self.average = 'mean'
BLB.__init__(self)
f = open('trainingData.csv')
trainingdata = csv.reader(f)
data = []
first = True
for event in trainingdata:
if first:
first = False
continue
else:
data.append(float(event[1]))
blb = MeanMean_BLB()
result = blb.run(data)
print ("Mean of Mean: ", result)
blb = SDMean_BLB()
result = blb.run(data)
print ("SD of Mean: ", result)
blb = MeanSD_BLB()
result = blb.run(data)
print ("Mean of SD: ", result)
blb = SDSD_BLB()
result = blb.run(data)
print ("SD of SD: ", result)
blb = CMeanSD_BLB()
result = blb.run(data)
print ("Mean of SD... in C: ", result)
blb = CMeanMean_BLB()
result = blb.run(data)
print ("Mean of Mean... in C: ", result)
blb = CSDSD_BLB()
result = blb.run(data)
print ("SD of SD... in C: ", result)
blb = MeanVariance_BLB()
result = blb.run(data)
print ("Mean of Variance: ", result)
blb = CMeanVariance_BLB()
result = blb.run(data)
print ("Mean of Variance... in C: ", result)