Skip to content

Latest commit

 

History

History
793 lines (688 loc) · 23.4 KB

README.md

File metadata and controls

793 lines (688 loc) · 23.4 KB

FastKNN Travis-CI Build Status AppVeyor Build Status codecov CRAN_Status_Badge

Fast k-Nearest Neighbors Classifier with shrinkage estimator for the class membership probabilities

Why fastknn?


The fastknn is now available on Kaggle. Take a look at this kernel to see an example on how to use fastknn to improve your performance on Kaggle competitions.


  1. Build KNN classifiers with large datasets (> 100k rows) in a few seconds.
  2. Predict more calibrated probabilities and reduce log-loss with the "dist" estimator.
  3. Find the best k parameter according to a variety of loss functions, using n-fold cross validation.
  4. Plot beautiful classification decision boundaries for your dataset.
  5. Do feature engineering and extract high informative features from your dataset.
  6. Compete in Kaggle.

Give it a try and let me know what you think!

Fast Nearest Neighbor Searching

The fastknn method implements a k-Nearest Neighbor (KNN) classifier based on the ANN library. ANN is written in C++ and is able to find the k nearest neighbors for every point in a given dataset in O(N log N) time. The package RANN provides an easy interface to use ANN library in R.

The FastKNN Classifier

The fastknn was developed to deal with very large datasets (> 100k rows) and is ideal to Kaggle competitions. It can be about 50x faster then the popular knn method from the R package class, for large datasets. Moreover, fastknn provides a shrinkage estimator to the class membership probabilities, based on the inverse distances of the nearest neighbors (see the equations on fastknn website):

$$ P(x_i \in y_j) = \displaystyle\frac{\displaystyle\sum\limits_{k=1}^K \left( \frac{1}{d_{ik}}\cdot(n_{ik} \in y_j) \right)}{\displaystyle\sum\limits_{k=1}^K \left( \frac{1}{d_{ik}} \right)} $$

where xi is the ith test instance, yj is the jth unique class label, ni**k is the kth nearest neighbor of xi, and di**k is the distance between xi and ni**k. This estimator can be thought of as a weighted voting rule, where those neighbors that are more close to xi will have more influence on predicting xi's label.

In general, the weighted estimator provides more calibrated probabilities when compared with the traditional estimator based on the label proportions of the nearest neighbors, and reduces logarithmic loss (log-loss).

How to install fastknn?

The package fastknn is not on CRAN, so you need to install it directly from GitHub:

library("devtools")
install_github("davpinto/fastknn")

Required Packages

The base of fastknn is the RANN package, but other packages are required to make fastknn work properly. All of them are automatically installed when you install the fastknn.

  • RANN for fast nearest neighbors searching,
  • foreach and doSNOW to do parallelized cross-validation,
  • Metrics to measure classification performance,
  • matrixStats for fast matrix column-wise and row-wise statistics,
  • ggplot2 to plot classification decision boundaries,
  • viridis for modern color palletes.

Getting Started

Using fastknn is as simple as:

## Load packages
library("fastknn")
library("caTools")

## Load toy data
data("chess", package = "fastknn")

## Split data for training and test
set.seed(123)
tr.idx <- which(caTools::sample.split(Y = chess$y, SplitRatio = 0.7))
x.tr   <- chess$x[tr.idx, ]
x.te   <- chess$x[-tr.idx, ]
y.tr   <- chess$y[tr.idx]
y.te   <- chess$y[-tr.idx]

## Fit KNN
yhat <- fastknn(x.tr, y.tr, x.te, k = 10)

## Evaluate model on test set
sprintf("Accuracy: %.2f", 100 * (1 - classLoss(actual = y.te, predicted = yhat$class)))
## [1] "Accuracy: 97.67"

Find the Best k

The fastknn provides a interface to select the best k using n-fold cross-validation. There are 4 possible loss functions:

  • Overall classification error rate: eval.metric = "overall_error"
  • Mean per-class classification error rate: eval.metric = "mean_error"
  • Mean per-class AUC: eval.metric = "auc"
  • Cross-entropy / logarithmic loss: eval.metric = "logloss"

Cross-validation using the voting probability estimator:

## Load dataset
library("mlbench")
data("Sonar", package = "mlbench")
x <- data.matrix(Sonar[, -61])
y <- Sonar$Class

## 5-fold CV using log-loss as evaluation metric
set.seed(123)
cv.out <- fastknnCV(x, y, k = 3:15, method = "vote", folds = 5, eval.metric = "logloss")
cv.out$cv_table
fold_1 fold_2 fold_3 fold_4 fold_5 mean k
2.638 3.629 2.721 1.895 0.9809 2.373 3
1.139 2.079 2.789 1.104 0.2251 1.467 4
1.203 1.304 2.791 1.133 0.315 1.349 5
0.5285 1.333 2.011 1.198 0.358 1.086 6
0.5567 0.5874 2.031 1.244 0.3923 0.9622 7
0.5657 0.593 2.058 1.244 0.417 0.9755 8
0.5502 0.6228 1.286 0.4712 0.4478 0.6757 9
0.5864 0.6344 0.5025 0.4843 0.4854 0.5386 10
0.5975 0.6518 0.5116 0.4765 0.5134 0.5502 11
0.6059 0.6543 0.5022 0.4897 0.5383 0.5581 12
0.5996 0.6642 0.5212 0.5132 0.566 0.5728 13
0.6114 0.6572 0.5283 0.5242 0.5882 0.5819 14
0.6163 0.6416 0.5416 0.5449 0.5959 0.5881 15

Cross-validation using the weighted voting probability estimator:

## 5-fold CV using log-loss as evaluation metric
set.seed(123)
cv.out <- fastknnCV(x, y, k = 3:15, method = "dist", folds = 5, eval.metric = "logloss")
cv.out$cv_table
fold_1 fold_2 fold_3 fold_4 fold_5 mean k
2.626 3.608 2.707 1.891 0.9645 2.359 3
1.111 2.052 2.766 1.094 0.1965 1.444 4
1.15 1.263 2.766 1.112 0.2682 1.312 5
0.4569 1.288 1.987 1.165 0.2946 1.038 6
0.4715 0.5304 1.999 1.199 0.3192 0.9039 7
0.4786 0.5315 2.022 1.2 0.3391 0.9142 8
0.4628 0.5587 1.246 0.4257 0.3636 0.6114 9
0.4918 0.5664 0.4651 0.4357 0.3912 0.47 10
0.5002 0.5783 0.4686 0.427 0.415 0.4778 11
0.5101 0.5768 0.4625 0.4367 0.4386 0.485 12
0.503 0.5861 0.4765 0.4542 0.4626 0.4965 13
0.5116 0.5794 0.4826 0.4663 0.4836 0.5047 14
0.5194 0.5742 0.4938 0.4842 0.4926 0.5128 15

Note that the mean log-loss for the weighted voting estimator is lower for every k evaluated.

Parallelization is available. You can specify the number of threads via nthread parameter.

Plot Classification Decision Boundary

The fastknn provides a plotting function, based on ggplot2, to draw bi-dimensional decision boundaries. If your dataset has more than 2 variables, only the first two will be considered. In future versions of fastknn the most descriptive variables will be selected automatically beforehand, using a feature ranking technique.

Two-class Problem

## Load toy data
data("spirals", package = "fastknn")

## Split data for training and test
set.seed(123)
tr.idx <- which(caTools::sample.split(Y = spirals$y, SplitRatio = 0.7))
x.tr   <- spirals$x[tr.idx, ]
x.te   <- spirals$x[-tr.idx, ]
y.tr   <- spirals$y[tr.idx]
y.te   <- spirals$y[-tr.idx]

## Plot decision boundary
knnDecision(x.tr, y.tr, x.te, y.te, k = 15)

Multi-class Problem

## Load toy data
data("multi_spirals", package = "fastknn")

## Split data for training and test
set.seed(123)
tr.idx <- which(caTools::sample.split(Y = multi_spirals$y, SplitRatio = 0.7))
x.tr   <- multi_spirals$x[tr.idx, ]
x.te   <- multi_spirals$x[-tr.idx, ]
y.tr   <- multi_spirals$y[tr.idx]
y.te   <- multi_spirals$y[-tr.idx]

## Plot decision boundary
knnDecision(x.tr, y.tr, x.te, y.te, k = 15)

Performance Test

Here we test the performance of fastknn on the Covertype datset. It is hosted on UCI repository and has been already used in a Kaggle competition. The dataset contains 581012 observations on 54 numeric features, classified into 7 different categories.

All experiments were conducted on a 64-bit Ubuntu 16.04 with Intel Core i7-6700HQ 2.60GHz and 16GB RAM DDR4.

Computing Time

Here fastknn is compared with the knn method from the package class. We had to use small samples from the Covertype data because knn takes too much time (> 1500s) to fit the entire dataset.

#### Load packages
library('class')
library('fastknn')
library('caTools')

#### Load data
data("covertype", package = "fastknn")
covertype$Target <- as.factor(covertype$Target)

#### Test with different sample sizes
N <- nrow(covertype)
sample.frac <- c(10e3, 15e3, 20e3)/N
res <- lapply(sample.frac, function(frac, dt) {
   ## Reduce datset
   set.seed(123)
   sample.idx <- which(sample.split(dt$Target, SplitRatio = frac))
   x <- as.matrix(dt[sample.idx, -55])
   y <- dt$Target[sample.idx]
   
   ## Split data
   set.seed(123)
   tr.idx <- which(sample.split(y, SplitRatio = 0.7))
   x.tr   <- x[tr.idx, ]
   x.te   <- x[-tr.idx, ]
   y.tr   <- y[tr.idx]
   y.te   <- y[-tr.idx]
   
   ## Measure time
   t1 <- system.time({
      yhat1 <- knn(train = x.tr, test = x.te, cl = y.tr, k = 10, prob = TRUE)
   })
   t2 <- system.time({
      yhat2 <- fastknn(xtr = x.tr, ytr = y.tr, xte = x.te, k = 10, method = "dist")
   })
   
   ## Return
   list(
      method = c('knn', 'fastknn'),
      nobs = as.integer(rep(N*frac, 2)),
      time_sec = c(t1[3], t2[3]), 
      accuracy = round(100 * c(sum(yhat1 == y.te), sum(yhat2$class == y.te)) / length(y.te), 2)
   )
}, dt = covertype)
res <- do.call('rbind.data.frame', res)
res
method nobs time_sec accuracy
knn 10000 1.32 73.38
fastknn 10000 0.086 77.04
knn 15000 2.942 73.71
fastknn 15000 0.116 76.82
knn 20000 6.518 76.38
fastknn 20000 0.15 80.37

The fastknn takes about 5s to fit the entire dataset.

Probability Prediction

We compared the voting estimator with the weighted voting estimator:

Voting

#### Extract input variables and response variable
x <- as.matrix(covertype[, -55])
y <- as.factor(covertype$Target)

#### 5-fold cross-validation
set.seed(123)
res <- fastknnCV(x, y, k = 10, method = "vote", folds = 5, eval.metric = "logloss")
res$cv_table
fold_1 fold_2 fold_3 fold_4 fold_5 mean k
0.6081 0.5524 0.5643 0.5682 0.6528 0.5892 10

Weighted Voting

#### 5-fold cross-validation
set.seed(123)
res <- fastknnCV(x, y, k = 10, method = "dist", folds = 5, eval.metric = "logloss")
res$cv_table
fold_1 fold_2 fold_3 fold_4 fold_5 mean k
0.5586 0.5039 0.5176 0.5181 0.604 0.5404 10

Feature Engineering

The fastknn provides a function to do feature extraction using KNN. It generates k * c new features, where c is the number of class labels. The new features are computed from the distances between the observations and their k nearest neighbors inside each class. The following example shows that the KNN features carry information that can not be extracted from data by a linear learner, like a GLM model:

library("mlbench")
library("caTools")
library("fastknn")
library("glmnet")

#### Load data
data("Ionosphere", package = "mlbench")
x <- data.matrix(subset(Ionosphere, select = -Class))
y <- Ionosphere$Class

#### Remove near zero variance columns
x <- x[, -c(1,2)]

#### Split data
set.seed(123)
tr.idx <- which(sample.split(Y = y, SplitRatio = 0.7))
x.tr <- x[tr.idx,]
x.te <- x[-tr.idx,]
y.tr <- y[tr.idx]
y.te <- y[-tr.idx]

#### GLM with original features
glm <- glmnet(x = x.tr, y = y.tr, family = "binomial", lambda = 0)
yhat <- drop(predict(glm, x.te, type = "class"))
yhat1 <- factor(yhat, levels = levels(y.tr))

#### Generate KNN features
set.seed(123)
new.data <- knnExtract(xtr = x.tr, ytr = y.tr, xte = x.te, k = 3)

#### GLM with KNN features
glm <- glmnet(x = new.data$new.tr, y = y.tr, family = "binomial", lambda = 0)
yhat <- drop(predict(glm, new.data$new.te, type = "class"))
yhat2 <- factor(yhat, levels = levels(y.tr))

#### Performance
sprintf("Accuracy: %.2f", 100 * (1 - classLoss(actual = y.te, predicted = yhat1)))
sprintf("Accuracy: %.2f", 100 * (1 - classLoss(actual = y.te, predicted = yhat2)))
## [1] "Accuracy: 83.81"

## [1] "Accuracy: 95.24"

We can see that the KNN features improved a lot the classification performance of the GLM model.

The knnExtract() function is based on the ideas presented in the winner solution of the Otto Group Product Classification Challenge on Kaggle.

Parallelization is available. You can specify the number of threads via nthread parameter.

Understanding the KNN Features

KNN makes a nonlinear mapping of the original space and project it into a linear one, in which the classes are linearly separable.

Mapping the chess dataset

library("caTools")
library("fastknn")
library("ggplot2")
library("gridExtra")

## Load data
data("chess")
x <- data.matrix(chess$x)
y <- chess$y

## Split data
set.seed(123)
tr.idx <- which(sample.split(Y = y, SplitRatio = 0.7))
x.tr <- x[tr.idx,]
x.te <- x[-tr.idx,]
y.tr <- y[tr.idx]
y.te <- y[-tr.idx]

## Feature extraction with KNN
set.seed(123)
new.data <- knnExtract(x.tr, y.tr, x.te, k = 1)

## Decision boundaries
g1 <- knnDecision(x.tr, y.tr, x.te, y.te, k = 10) +
   labs(title = "Original Features")
g2 <- knnDecision(new.data$new.tr, y.tr, new.data$new.te, y.te, k = 10) +
   labs(title = "KNN Features")
grid.arrange(g1, g2, ncol = 2)

Mapping the spirals dataset

## Load data
data("spirals")
x <- data.matrix(spirals$x)
y <- spirals$y

## Split data
set.seed(123)
tr.idx <- which(sample.split(Y = y, SplitRatio = 0.7))
x.tr <- x[tr.idx,]
x.te <- x[-tr.idx,]
y.tr <- y[tr.idx]
y.te <- y[-tr.idx]

## Feature extraction with KNN
set.seed(123)
new.data <- knnExtract(x.tr, y.tr, x.te, k = 1)

## Decision boundaries
g1 <- knnDecision(x.tr, y.tr, x.te, y.te, k = 10) +
   labs(title = "Original Features")
g2 <- knnDecision(new.data$new.tr, y.tr, new.data$new.te, y.te, k = 10) +
   labs(title = "KNN Features")
grid.arrange(g1, g2, ncol = 2)