forked from bits-and-blooms/bloom
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bloom.go
320 lines (276 loc) · 9 KB
/
bloom.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
/*
Package bloom provides data structures and methods for creating Bloom filters.
A Bloom filter is a representation of a set of _n_ items, where the main
requirement is to make membership queries; _i.e._, whether an item is a
member of a set.
A Bloom filter has two parameters: _m_, a maximum size (typically a reasonably large
multiple of the cardinality of the set to represent) and _k_, the number of hashing
functions on elements of the set. (The actual hashing functions are important, too,
but this is not a parameter for this implementation). A Bloom filter is backed by
a BitSet; a key is represented in the filter by setting the bits at each value of the
hashing functions (modulo _m_). Set membership is done by _testing_ whether the
bits at each value of the hashing functions (again, modulo _m_) are set. If so,
the item is in the set. If the item is actually in the set, a Bloom filter will
never fail (the true positive rate is 1.0); but it is susceptible to false
positives. The art is to choose _k_ and _m_ correctly.
In this implementation, the hashing functions used is a local version of FNV,
a non-cryptographic hashing function, seeded with the index number of
the kth hashing function.
This implementation accepts keys for setting as testing as []byte. Thus, to
add a string item, "Love":
uint n = 1000
filter := bloom.New(20*n, 5) // load of 20, 5 keys
filter.Add([]byte("Love"))
Similarly, to test if "Love" is in bloom:
if filter.Test([]byte("Love"))
For numeric data, I recommend that you look into the binary/encoding library. But,
for example, to add a uint32 to the filter:
i := uint32(100)
n1 := make([]byte,4)
binary.BigEndian.PutUint32(n1,i)
f.Add(n1)
Finally, there is a method to estimate the false positive rate of a particular
Bloom filter for a set of size _n_:
if filter.EstimateFalsePositiveRate(1000) > 0.001
Given the particular hashing scheme, it's best to be empirical about this. Note
that estimating the FP rate will clear the Bloom filter.
*/
package bloom
import (
"bytes"
"encoding/binary"
"encoding/json"
"fmt"
"io"
"math"
"github.com/spaolacci/murmur3"
"github.com/willf/bitset"
)
// A BloomFilter is a representation of a set of _n_ items, where the main
// requirement is to make membership queries; _i.e._, whether an item is a
// member of a set.
type BloomFilter struct {
m uint
k uint
b *bitset.BitSet
}
// New creates a new Bloom filter with _m_ bits and _k_ hashing functions
func New(m uint, k uint) *BloomFilter {
return &BloomFilter{m, k, bitset.New(m)}
}
// baseHashes returns the four hash values of data that are used to create k
// hashes
func baseHashes(data []byte) [4]uint64 {
a1 := []byte{1} // to grab another bit of data
hasher := murmur3.New128()
hasher.Write(data)
v1, v2 := hasher.Sum128()
hasher.Write(a1)
v3, v4 := hasher.Sum128()
return [4]uint64{
v1, v2, v3, v4,
}
}
// location returns the ith hashed location using the four base hash values
func (f *BloomFilter) location(h [4]uint64, i uint) (location uint) {
ii := uint64(i)
location = uint((h[ii%2] + ii*h[2+(((ii+(ii%2))%4)/2)]) % uint64(f.m))
return
}
// EstimateParameters estimates requirements for m and k.
// Based on https://bitbucket.org/ww/bloom/src/829aa19d01d9/bloom.go
// used with permission.
func EstimateParameters(n uint, p float64) (m uint, k uint) {
m = uint(math.Ceil(-1 * float64(n) * math.Log(p) / math.Pow(math.Log(2), 2)))
k = uint(math.Ceil(math.Log(2) * float64(m) / float64(n)))
return
}
// NewWithEstimates creates a new Bloom filter for about n items with fp
// false positive rate
func NewWithEstimates(n uint, fp float64) *BloomFilter {
m, k := EstimateParameters(n, fp)
return New(m, k)
}
// Cap returns the capacity, _m_, of a Bloom filter
func (f *BloomFilter) Cap() uint {
return f.m
}
// K returns the number of hash functions used in the BloomFilter
func (f *BloomFilter) K() uint {
return f.k
}
// Add data to the Bloom Filter. Returns the filter (allows chaining)
func (f *BloomFilter) Add(data []byte) *BloomFilter {
h := baseHashes(data)
for i := uint(0); i < f.k; i++ {
f.b.Set(f.location(h, i))
}
return f
}
// Merge the data from two Bloom Filters.
func (f *BloomFilter) Merge(g *BloomFilter) error {
// Make sure the m's and k's are the same, otherwise merging has no real use.
if f.m != g.m {
return fmt.Errorf("m's don't match: %d != %d", f.m, g.m)
}
if f.k != g.k {
return fmt.Errorf("k's don't match: %d != %d", f.m, g.m)
}
f.b.InPlaceUnion(g.b)
return nil
}
// Copy creates a copy of a Bloom filter.
func (f *BloomFilter) Copy() *BloomFilter {
fc := New(f.m, f.k)
fc.Merge(f)
return fc
}
// AddString to the Bloom Filter. Returns the filter (allows chaining)
func (f *BloomFilter) AddString(data string) *BloomFilter {
return f.Add([]byte(data))
}
// Test returns true if the data is in the BloomFilter, false otherwise.
// If true, the result might be a false positive. If false, the data
// is definitely not in the set.
func (f *BloomFilter) Test(data []byte) bool {
h := baseHashes(data)
for i := uint(0); i < f.k; i++ {
if !f.b.Test(f.location(h, i)) {
return false
}
}
return true
}
// TestString returns true if the string is in the BloomFilter, false otherwise.
// If true, the result might be a false positive. If false, the data
// is definitely not in the set.
func (f *BloomFilter) TestString(data string) bool {
return f.Test([]byte(data))
}
// TestAndAdd is the equivalent to calling Test(data) then Add(data).
// Returns the result of Test.
func (f *BloomFilter) TestAndAdd(data []byte) bool {
present := true
h := baseHashes(data)
for i := uint(0); i < f.k; i++ {
l := f.location(h, i)
if !f.b.Test(l) {
present = false
}
f.b.Set(l)
}
return present
}
// TestAndAddString is the equivalent to calling Test(string) then Add(string).
// Returns the result of Test.
func (f *BloomFilter) TestAndAddString(data string) bool {
return f.TestAndAdd([]byte(data))
}
// ClearAll clears all the data in a Bloom filter, removing all keys
func (f *BloomFilter) ClearAll() *BloomFilter {
f.b.ClearAll()
return f
}
// EstimateFalsePositiveRate returns, for a BloomFilter with a estimate of m bits
// and k hash functions, what the false positive rate will be
// while storing n entries; runs 100,000 tests. This is an empirical
// test using integers as keys. As a side-effect, it clears the BloomFilter.
func (f *BloomFilter) EstimateFalsePositiveRate(n uint) (fpRate float64) {
rounds := uint32(100000)
f.ClearAll()
n1 := make([]byte, 4)
for i := uint32(0); i < uint32(n); i++ {
binary.BigEndian.PutUint32(n1, i)
f.Add(n1)
}
fp := 0
// test for number of rounds
for i := uint32(0); i < rounds; i++ {
binary.BigEndian.PutUint32(n1, i+uint32(n)+1)
if f.Test(n1) {
//fmt.Printf("%v failed.\n", i+uint32(n)+1)
fp++
}
}
fpRate = float64(fp) / (float64(rounds))
f.ClearAll()
return
}
// bloomFilterJSON is an unexported type for marshaling/unmarshaling BloomFilter struct.
type bloomFilterJSON struct {
M uint `json:"m"`
K uint `json:"k"`
B *bitset.BitSet `json:"b"`
}
// MarshalJSON implements json.Marshaler interface.
func (f *BloomFilter) MarshalJSON() ([]byte, error) {
return json.Marshal(bloomFilterJSON{f.m, f.k, f.b})
}
// UnmarshalJSON implements json.Unmarshaler interface.
func (f *BloomFilter) UnmarshalJSON(data []byte) error {
var j bloomFilterJSON
err := json.Unmarshal(data, &j)
if err != nil {
return err
}
f.m = j.M
f.k = j.K
f.b = j.B
return nil
}
// WriteTo writes a binary representation of the BloomFilter to an i/o stream.
// It returns the number of bytes written.
func (f *BloomFilter) WriteTo(stream io.Writer) (int64, error) {
err := binary.Write(stream, binary.BigEndian, uint64(f.m))
if err != nil {
return 0, err
}
err = binary.Write(stream, binary.BigEndian, uint64(f.k))
if err != nil {
return 0, err
}
numBytes, err := f.b.WriteTo(stream)
return numBytes + int64(2*binary.Size(uint64(0))), err
}
// ReadFrom reads a binary representation of the BloomFilter (such as might
// have been written by WriteTo()) from an i/o stream. It returns the number
// of bytes read.
func (f *BloomFilter) ReadFrom(stream io.Reader) (int64, error) {
var m, k uint64
err := binary.Read(stream, binary.BigEndian, &m)
if err != nil {
return 0, err
}
err = binary.Read(stream, binary.BigEndian, &k)
if err != nil {
return 0, err
}
b := &bitset.BitSet{}
numBytes, err := b.ReadFrom(stream)
if err != nil {
return 0, err
}
f.m = uint(m)
f.k = uint(k)
f.b = b
return numBytes + int64(2*binary.Size(uint64(0))), nil
}
// GobEncode implements gob.GobEncoder interface.
func (f *BloomFilter) GobEncode() ([]byte, error) {
var buf bytes.Buffer
_, err := f.WriteTo(&buf)
if err != nil {
return nil, err
}
return buf.Bytes(), nil
}
// GobDecode implements gob.GobDecoder interface.
func (f *BloomFilter) GobDecode(data []byte) error {
buf := bytes.NewBuffer(data)
_, err := f.ReadFrom(buf)
return err
}
// Equal tests for the equality of two Bloom filters
func (f *BloomFilter) Equal(g *BloomFilter) bool {
return f.m == g.m && f.k == g.k && f.b.Equal(g.b)
}