-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
247 lines (195 loc) · 7.71 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import asyncio
import os
import cv2
from aiortc import MediaStreamTrack, RTCPeerConnection, RTCSessionDescription
from aiortc.contrib.media import MediaBlackhole, MediaPlayer, MediaRelay
from av import VideoFrame
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from starlette.requests import Request
from starlette.responses import HTMLResponse
from starlette.templating import Jinja2Templates
from src.schemas import Offer
ROOT = os.path.dirname(__file__)
app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="templates")
faces = cv2.CascadeClassifier(
cv2.data.haarcascades + "haarcascade_frontalface_default.xml"
)
eyes = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_eye.xml")
smiles = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_smile.xml")
class VideoTransformTrack(MediaStreamTrack):
"""
A video stream track that transforms frames from an another track.
"""
kind = "video"
def __init__(self, track, transform):
super().__init__()
self.track = track
self.transform = transform
async def recv(self):
frame = await self.track.recv()
if self.transform == "cartoon":
img = frame.to_ndarray(format="bgr24")
# prepare color
img_color = cv2.pyrDown(cv2.pyrDown(img))
for _ in range(6):
img_color = cv2.bilateralFilter(img_color, 9, 9, 7)
img_color = cv2.pyrUp(cv2.pyrUp(img_color))
# prepare edges
img_edges = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
img_edges = cv2.adaptiveThreshold(
cv2.medianBlur(img_edges, 7),
255,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY,
9,
2,
)
img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB)
# combine color and edges
img = cv2.bitwise_and(img_color, img_edges)
# rebuild a VideoFrame, preserving timing information
new_frame = VideoFrame.from_ndarray(img, format="bgr24")
new_frame.pts = frame.pts
new_frame.time_base = frame.time_base
return new_frame
elif self.transform == "edges":
# perform edge detection
img = frame.to_ndarray(format="bgr24")
img = cv2.cvtColor(cv2.Canny(img, 100, 200), cv2.COLOR_GRAY2BGR)
# rebuild a VideoFrame, preserving timing information
new_frame = VideoFrame.from_ndarray(img, format="bgr24")
new_frame.pts = frame.pts
new_frame.time_base = frame.time_base
return new_frame
elif self.transform == "rotate":
# rotate image
img = frame.to_ndarray(format="bgr24")
rows, cols, _ = img.shape
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), frame.time * 45, 1)
img = cv2.warpAffine(img, M, (cols, rows))
# rebuild a VideoFrame, preserving timing information
new_frame = VideoFrame.from_ndarray(img, format="bgr24")
new_frame.pts = frame.pts
new_frame.time_base = frame.time_base
return new_frame
elif self.transform == "cv":
img = frame.to_ndarray(format="bgr24")
face = faces.detectMultiScale(img, 1.1, 19)
for x, y, w, h in face:
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
eye = eyes.detectMultiScale(img, 1.1, 19)
for x, y, w, h in eye:
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
# smile = smiles.detectMultiScale(img, 1.1, 19)
# for (x, y, w, h) in smile:
# cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 5), 2)
new_frame = VideoFrame.from_ndarray(img, format="bgr24")
new_frame.pts = frame.pts
new_frame.time_base = frame.time_base
return new_frame
else:
return frame
def create_local_tracks(play_from=None):
if play_from:
player = MediaPlayer(play_from)
return player.audio, player.video
else:
options = {"framerate": "30", "video_size": "1920x1080"}
# if relay is None:
# if platform.system() == "Darwin":
# webcam = MediaPlayer(
# "default:none", format="avfoundation", options=options
# )
# elif platform.system() == "Windows":
# webcam = MediaPlayer("video.mp4")
webcam = MediaPlayer(
"video=FULL HD 1080P Webcam", format="dshow", options=options
)
# else:
# webcam = MediaPlayer("/dev/video0", format="v4l2", options=options)
# audio, video = VideoTransformTrack(webcam.video, transform="cv")
relay = MediaRelay()
return None, relay.subscribe(webcam.video)
@app.get("/", response_class=HTMLResponse)
async def index(request: Request):
return templates.TemplateResponse("index.html", {"request": request})
@app.get("/cv", response_class=HTMLResponse)
async def index(request: Request):
return templates.TemplateResponse("index_cv.html", {"request": request})
@app.post("/offer")
async def offer(params: Offer):
offer = RTCSessionDescription(sdp=params.sdp, type=params.type)
pc = RTCPeerConnection()
pcs.add(pc)
recorder = MediaBlackhole()
@pc.on("connectionstatechange")
async def on_connectionstatechange():
print("Connection state is %s" % pc.connectionState)
if pc.connectionState == "failed":
await pc.close()
pcs.discard(pc)
# open media source
audio, video = create_local_tracks()
# handle offer
await pc.setRemoteDescription(offer)
await recorder.start()
# send answer
answer = await pc.createAnswer()
await pc.setRemoteDescription(offer)
for t in pc.getTransceivers():
if t.kind == "audio" and audio:
pc.addTrack(audio)
elif t.kind == "video" and video:
pc.addTrack(video)
await pc.setLocalDescription(answer)
return {"sdp": pc.localDescription.sdp, "type": pc.localDescription.type}
@app.post("/offer_cv")
async def offer(params: Offer):
offer = RTCSessionDescription(sdp=params.sdp, type=params.type)
pc = RTCPeerConnection()
pcs.add(pc)
recorder = MediaBlackhole()
relay = MediaRelay()
@pc.on("connectionstatechange")
async def on_connectionstatechange():
print("Connection state is %s" % pc.connectionState)
if pc.connectionState == "failed":
await pc.close()
pcs.discard(pc)
# open media source
# audio, video = create_local_tracks()
@pc.on("track")
def on_track(track):
# if track.kind == "audio":
# pc.addTrack(player.audio)
# recorder.addTrack(track)
if track.kind == "video":
pc.addTrack(
VideoTransformTrack(
relay.subscribe(track), transform=params.video_transform
)
)
# if args.record_to:
# recorder.addTrack(relay.subscribe(track))
@track.on("ended")
async def on_ended():
await recorder.stop()
# handle offer
await pc.setRemoteDescription(offer)
await recorder.start()
# send answer
answer = await pc.createAnswer()
await pc.setRemoteDescription(offer)
await pc.setLocalDescription(answer)
return {"sdp": pc.localDescription.sdp, "type": pc.localDescription.type}
pcs = set()
args = ""
@app.on_event("shutdown")
async def on_shutdown():
# close peer connections
coros = [pc.close() for pc in pcs]
await asyncio.gather(*coros)
pcs.clear()