-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
223 lines (183 loc) · 9.29 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import streamlit as st
import requests
import os
from pytube import YouTube
import tempfile
from fpdf import FPDF
import time
from together import Together
# API configurations
together_api_key = os.environ.get('TOGETHER_API_KEY')
assembly_api_key = os.environ.get('ASSEMBLYAI_API_KEY')
client = Together(api_key=together_api_key)
assembly_base_url = "https://api.assemblyai.com/v2"
assembly_headers = {
"authorization": assembly_api_key
}
def generate_sentiment_score(input_text, parameters):
prompt = f'''
You are an experienced interview reviewer and consultant for a reputable company. Your role is to evaluate the sentiment displayed by job candidates during their interviews based on the transcripts of their responses.
The hiring team has provided you with an interview transcript and has asked you to analyze the candidate's sentiment for the following parameters: {', '.join(parameters)}. Your assessment will help the team make more informed hiring decisions and identify candidates who demonstrate genuine positive sentiment towards the role and the company.
The parameters to evaluate are:
{', '.join(parameters)}.
To complete this task, you will:
1. Carefully review the provided interview transcript.
2. Consider phrases, word choices, or patterns of speech that convey positive or negative sentiment for each parameter.
3. Based on your analysis, provide a sentiment score on a scale of 1-5 for each parameter, with 1 being extremely negative and 5 being extremely positive.
Provide your scores in the format: Parameter: (Score).
4. The output should be like a professional interview reviewer(HR)
Here's the transcript:
{input_text}
'''
response = client.chat.completions.create(
model="microsoft/WizardLM-2-8x22B",
messages=[
{"role": "system", "content": "You are an AI assistant that analyzes interview transcripts and provides sentiment scores."},
{"role": "user", "content": prompt}
],
temperature=0.1,
max_tokens=1024,
top_p=0.7
)
return response.choices[0].message.content
def generate_detailed_feedback(input_text, parameters):
prompt = f'''
As an experienced interview reviewer, provide a detailed analysis of the candidate's responses based on the following parameters: {', '.join(parameters)}.
Include specific examples, quotes, and adjectives from the transcript that support your analysis.(no need to provide scores)Offer actionable insights and recommendations for the hiring team to make informed decisions. Summarize the candidate's overall sentiment and demeanor.
Here's the transcript:
{input_text}
'''
response = client.chat.completions.create(
model="microsoft/WizardLM-2-8x22B",
messages=[
{"role": "system", "content": "You are an AI assistant that provides detailed feedback on interview transcripts."},
{"role": "user", "content": prompt}
],
temperature=0.3,
max_tokens=2048,
top_p=0.7
)
return response.choices[0].message.content
def upload_to_assemblyai(file_path):
with open(file_path, "rb") as f:
response = requests.post(f"{assembly_base_url}/upload", headers=assembly_headers, data=f)
return response.json().get("upload_url")
def transcribe_with_assemblyai(upload_url):
data = {
"audio_url": upload_url
}
response = requests.post(f"{assembly_base_url}/transcript", json=data, headers=assembly_headers)
transcript_id = response.json().get("id")
while True:
response = requests.get(f"{assembly_base_url}/transcript/{transcript_id}", headers=assembly_headers)
result = response.json()
if result['status'] == 'completed':
return result['text']
elif result['status'] == 'failed':
raise Exception("Transcription failed")
time.sleep(5)
def transcript(video_link):
try:
yt = YouTube(video_link)
stream = yt.streams.filter(only_audio=True).first()
temp_file_path = tempfile.mktemp(suffix=".mp4")
stream.download(output_path=os.path.dirname(temp_file_path), filename=os.path.basename(temp_file_path))
print(f"Video '{yt.title}' downloaded successfully!")
upload_url = upload_to_assemblyai(temp_file_path)
transcription_text = transcribe_with_assemblyai(upload_url)
os.remove(temp_file_path)
return transcription_text
except Exception as e:
print(f"Error: {e}")
return None
def main():
st.set_page_config(page_title="Insight Hire", page_icon=":bar_chart:")
st.title("Insight Hire")
st.write("Analyze interview transcripts or videos to gain valuable insights into candidate sentiment.")
st.sidebar.markdown("## About")
st.sidebar.markdown("""
<div style='color: #1f77b4; font-weight: bold;'>Streamline Your Interview Evaluation</div>
- Get data-driven sentiment scores for key parameters
- Identify top candidates based on sentiment analysis
- Make informed hiring decisions with actionable insights
""", unsafe_allow_html=True)
st.sidebar.markdown("<hr>", unsafe_allow_html=True) # Horizontal separator
st.sidebar.markdown("## Tips")
st.sidebar.markdown("""
<div style='color: #2ca02c; font-weight: bold;'>📝 Input Preparation</div>
- Provide clear interview transcripts or valid video links
- Specify relevant parameters for sentiment analysis
""", unsafe_allow_html=True)
st.sidebar.markdown("<hr>", unsafe_allow_html=True) # Horizontal separator
st.sidebar.markdown("## About Me")
st.sidebar.markdown("""
<div style='color: #d62728; font-weight: bold;'>👋 Hi, I'm Dhruv!</div>
I want to make a real impact in the field of AI/ML . My main interest lies in model building and deployment. I'm passionate about leveraging cutting-edge technologies to solve real-world problems.
""", unsafe_allow_html=True)
input_option = st.radio("Select input type", ("Text", "YouTube Video Link"))
input_text = ""
if input_option == "Text":
input_text = st.text_area("Enter the interview transcript:")
else:
video_link = st.text_input("Enter the YouTube video link:")
if video_link:
with st.spinner("Processing video..."):
input_text = transcript(video_link)
if not input_text:
st.error("Error processing the video. Please try again with a different link.")
return
parameters = st.text_input("Enter the parameters for sentiment analysis (comma-separated):", "Enthusiasm, Communication Skills, Technical Knowledge")
parameters = [param.strip() for param in parameters.split(",")]
if st.button("Analyze"):
if input_text and parameters:
with st.spinner("Generating sentiment scores..."):
sentiment_scores = generate_sentiment_score(input_text, parameters)
st.subheader("Sentiment Scores")
st.write(sentiment_scores)
# Parse and display scores (adjust as needed based on the model's output format)
scores = [line.split(":") for line in sentiment_scores.split("\n") if ":" in line]
for param, score in scores:
param = param.strip()
try:
score = float(score.strip())
if score >= 4:
color = "#2ca02c" # Green
elif score >= 3:
color = "#ff7f0e" # Orange
else:
color = "#d62728" # Red
st.markdown(f"**{param}**: <span style='color: {color}'>{score}/5</span>", unsafe_allow_html=True)
except ValueError:
pass
# Generate detailed feedback
with st.spinner("Generating detailed feedback..."):
detailed_feedback = generate_detailed_feedback(input_text, parameters)
st.subheader("Detailed Feedback")
st.write(detailed_feedback)
# Provide an option to download detailed feedback as a .txt or .pdf file
temp_txt_path = tempfile.mktemp(suffix=".txt")
with open(temp_txt_path, 'w') as f:
f.write(detailed_feedback)
st.download_button(
label="Download Detailed Feedback as .txt",
data=open(temp_txt_path, 'r').read(),
file_name="detailed_feedback.txt",
mime="text/plain"
)
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 10, detailed_feedback)
temp_pdf_path = tempfile.mktemp(suffix=".pdf")
pdf.output(temp_pdf_path)
with open(temp_pdf_path, "rb") as f:
st.download_button(
label="Download Detailed Feedback as .pdf",
data=f.read(),
file_name="detailed_feedback.pdf",
mime="application/pdf"
)
else:
st.warning("Please provide input and parameters for sentiment analysis.")
if __name__ == "__main__":
main()