-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_data_augmentation.py
166 lines (137 loc) · 6.93 KB
/
test_data_augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import glob
import os
from datetime import datetime
import sys
import numpy as np
import skimage as sk
import tensorflow as tf
from keras import layers
from tensorflow import keras
import definitions
hist_eq_thresh = np.random.default_rng().choice(np.array(range(0, 3)) / 10.0)
sat_thresh = np.random.default_rng().choice(np.array(range(0, 7)) / 10.0)
noise_thresh = np.random.default_rng().choice(np.array(range(0, 9)) / 10.0)
noise_sd = np.random.default_rng().choice(np.array(range(5, 11)) / 500.0)
percent_1 = np.random.default_rng().choice(np.array(range(6, 16)))
percent_2 = np.random.default_rng().choice(np.array(range(3, 7)))
image_size = (224, 268)
cropped_image_size = (224, 224)
batch_size = 32
buffer_size = 1
name = "simple_regression_" + definitions.name
# train_path = "Zebrafish_Train_Regression"
train_path = "/nemo/stp/lm/working/barryd/hpc/python/keras_image_class/Zebrafish_Train_Regression"
aug_path = "/nemo/stp/lm/working/barryd/hpc/python/keras_image_class/Zebrafish_Train_Regression_Augmented"
# train_path = "Z:/working/barryd/hpc/python/keras_image_class/Zebrafish_Train_Regression/"
# train_path = "C:/Users/davej/Dropbox (The Francis Crick)/ZF_Test"
date_time = datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
output_path = aug_path + '_' + date_time + '_' + sys.argv[1]
os.makedirs(output_path)
for i in range(190):
if not os.path.exists(output_path + os.sep + str(4.5 + i * 0.25)):
os.makedirs(output_path + os.sep + str(4.5 + i * 0.25))
with open(output_path + os.sep + name + '_source.py', 'w') as f:
f.write(open(__file__).read())
def parse_image(filename):
parts = tf.strings.split(filename, os.sep)
label = float(parts[-2])
image = tf.io.read_file(filename)
image = tf.image.decode_png(image)
# image = tf.image.convert_image_dtype(image, tf.float32)
image = tf.image.resize(image, image_size)
return image, label
def random_augment_img(x, p=0.25):
x = x.numpy() / 255.0
if np.random.default_rng().uniform() > hist_eq_thresh:
x = sk.exposure.equalize_adapthist(x)
if np.random.default_rng().uniform() > sat_thresh:
v_min, v_max = np.percentile(x,
(np.random.default_rng().uniform() * percent_1,
100.0 - np.random.default_rng().uniform() * percent_2))
x = sk.exposure.rescale_intensity(x, in_range=(v_min, v_max))
if np.random.default_rng().uniform() > noise_thresh:
x = sk.util.random_noise(x, var=noise_sd * np.random.default_rng().uniform())
x = tf.convert_to_tensor(255.0 * x)
return x
def random_augment(factor=0.5):
return layers.Lambda(lambda x: random_augment_img(x, factor))
strategy = tf.distribute.MirroredStrategy()
print('Number of devices: {}'.format(strategy.num_replicas_in_sync))
train_files = glob.glob(train_path + os.sep + "*" + os.sep + "*.png")
filtered_train_files = [r for r in train_files if
"20201127_FishDev_WT_28.5_1-C6" not in r and
"20201127_FishDev_WT_28.5_1-H11" not in r and
"FishDev_WT_01_1-A3" not in r and
"FishDev_WT_01_1-A7" not in r and
"FishDev_WT_01_1-D6" not in r and
"FishDev_WT_01_1-E3" not in r and
"FishDev_WT_01_1-F2" not in r and
"FishDev_WT_01_1-G1" not in r and
"FishDev_WT_01_1-G5" not in r and
"FishDev_WT_01_1-G10" not in r and
"FishDev_WT_01_1-H2" not in r and
"FishDev_WT_01_1-H8" not in r and
"FishDev_WT_02_3-A1" not in r and
"FishDev_WT_02_3-A10" not in r and
"FishDev_WT_02_3-A4" not in r and
"FishDev_WT_02_3-A7" not in r and
"FishDev_WT_02_3-C10" not in r and
"FishDev_WT_02_3-C11" not in r and
"FishDev_WT_02_3-C7" not in r and
"FishDev_WT_02_3-D2" not in r and
"FishDev_WT_02_3-D6" not in r and
"FishDev_WT_02_3-D7" not in r and
"FishDev_WT_02_3-D11" not in r and
"FishDev_WT_02_3-E1" not in r and
"FishDev_WT_02_3-E10" not in r and
"FishDev_WT_02_3-E2" not in r and
"FishDev_WT_02_3-F12" not in r and
"FishDev_WT_02_3-G10" not in r and
"FishDev_WT_02_3-G11" not in r and
"FishDev_WT_02_3-G12" not in r and
"FishDev_WT_02_3-G3" not in r and
"FishDev_WT_02_3-G4" not in r and
"FishDev_WT_02_3-G8" not in r and
"FishDev_WT_02_3-H6" not in r and
"FishDev_WT_02_3-H7" not in r]
# train_list_ds = tf.data.Dataset.from_tensor_slices(filtered_train_files).shuffle(1000)
# train_list_ds = tf.data.Dataset.from_tensor_slices(train_files).shuffle(1000)
train_list_ds = tf.data.Dataset.list_files(filtered_train_files).shuffle(1000)
print("Number of images in training dataset: ", train_list_ds.cardinality().numpy())
train_images_ds = train_list_ds.map(parse_image, num_parallel_calls=tf.data.AUTOTUNE).batch(batch_size)
train_ds = train_images_ds.prefetch(tf.data.AUTOTUNE).cache()
# train_ds = train_ds.prefetch(buffer_size=buffer_size).cache()
# val_ds = val_ds.prefetch(buffer_size=buffer_size).cache()
fill = 'reflect'
inter = 'bilinear'
with strategy.scope():
model = keras.Sequential(
[
# layers.RandomFlip(mode="horizontal_and_vertical"),
# layers.RandomTranslation(height_factor=0.0, width_factor=0.1, fill_mode=fill,
# interpolation=inter),
# layers.RandomZoom(height_factor=(-0.3, 0.0), fill_mode=fill, interpolation=inter),
layers.RandomBrightness(factor=(-0.1, 0.3)),
random_augment(factor=0.5),
# layers.Rescaling(1.0 / 255)
]
)
# plt.figure(figsize=(20, 17))
# result = model(train_ds.take(1))
count = 0
for images, labels in train_ds:
for i in range(len(images)):
augImage = model(images[i], training=True).numpy()
sk.io.imsave(output_path + os.sep + str(labels[i].numpy()) + os.sep + str(count) + '_augmented.png',
augImage[:, :, 0].astype('ubyte'))
count = count + 1
model.summary()
with open(output_path + os.sep + name + '_model_summary.txt', 'w') as fh:
model.summary(print_fn=lambda x: fh.write(x + '\n'))
fh.write('hist_eq_thresh: ' + str(hist_eq_thresh))
fh.write('sat_thresh: ' + str(sat_thresh))
fh.write('noise_thresh: ' + str(noise_thresh))
fh.write('noise_sd: ' + str(noise_sd))
fh.write('percent_1: ' + str(percent_1))
fh.write('percent_2: ' + str(percent_2))
print("Done.")