forked from smatmo/l0-sparse-NMF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
NNLS_PG.m
90 lines (84 loc) · 2.83 KB
/
NNLS_PG.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
function [H,grad,iter] = NNLS_PG(V,W,Hinit,tol,maxiter)
%
% Nonnegative Least-Squares using projected gradients
%
% Copyright (c) 2005-2008 Chih-Jen Lin
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions
% are met:
%
% 1. Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in the
% documentation and/or other materials provided with the distribution.
%
% 3. Neither name of copyright holders nor the names of its contributors
% may be used to endorse or promote products derived from this software
% without specific prior written permission.
%
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
% ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
% LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
% A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
% CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
% EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
% PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
% PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
% LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
% NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
% SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
%
% H, grad: output solution and gradient
% iter: #iterations used
% V, W: constant matrices
% Hinit: initial solution
% tol: stopping tolerance
% maxiter: limit of iterations
%
H = Hinit;
WtV = W'*V;
WtW = W'*W;
numelH = numel(H);
alpha = 1;
beta = 0.1;
for iter=1:maxiter
%fprintf('%f \n', sum(sum((V-W*H).^2)))
grad = WtW*H - WtV;
projgrad = norm(grad(grad < 0 | H >0),'fro');
if projgrad < tol
break
end
% search step size
for inner_iter=1:20
Hn = max(H - alpha*grad, 0);
d = Hn-H;
gradd = grad(:)' * d(:); % gradd = sum(sum(grad.*d));
dQd = reshape(WtW*d,1,numelH) * d(:); % dQd = sum(sum((WtW*d).*d));
suff_decr = 0.99*gradd + 0.5*dQd < 0;
if inner_iter==1
decr_alpha = ~suff_decr;
Hp = H;
end
if decr_alpha
if suff_decr
H = Hn;
break;
else
alpha = alpha * beta;
end
else
if ~suff_decr | Hp == Hn
H = Hp;
break;
else
alpha = alpha/beta;
Hp = Hn;
end
end
end
end