diff --git a/.github/workflows/unittest.yml b/.github/workflows/unittest.yml index 7d7f3b3077..edd93e9cd5 100644 --- a/.github/workflows/unittest.yml +++ b/.github/workflows/unittest.yml @@ -39,17 +39,9 @@ jobs: shell: bash -l {0} run: | conda env create -n gluon_cv_py3_test -f tests/py3_mxnet_ci.yml - conda env update -n gluon_cv_py3_test -f tests/py3_mxnet_ci.yml --prune conda activate gluon_cv_py3_test - conda list - export CUDA_VISIBLE_DEVICES=0 - export KMP_DUPLICATE_LIB_OK=TRUE - make clean - pip install --upgrade --force-reinstall --no-deps . - env - export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64 - export MPLBACKEND=Agg - export MXNET_CUDNN_AUTOTUNE_DEFAULT=0 + pip install --upgrade pip setuptools wheel + pip install --upgrade -e . export TINY_COCO=~/.mxnet/datasets/tiny_coco export TINY_MOTORBIKE=~/.mxnet/datasets/tiny_motorbike mkdir -p $TINY_COCO/annotations diff --git a/README.md b/README.md index 9e88b6a851..e59860b351 100644 --- a/README.md +++ b/README.md @@ -26,6 +26,9 @@ models. This toolkit offers four main features: 4. Carefully designed APIs that greatly reduce the implementation complexity 5. Community supports +Please also checkout [AutoGluon](https://github.com/autogluon/autogluon) if you have [image classification](https://auto.gluon.ai/stable/tutorials/multimodal/image_prediction/index.html) or [object detection](https://auto.gluon.ai/stable/tutorials/multimodal/object_detection/index.html) needs. We have built the [MultimodalPredictor](https://auto.gluon.ai/stable/tutorials/multimodal/index.html) with an improved model zoo, including [TIMM](https://github.com/rwightman/pytorch-image-models), [Huggingface](https://huggingface.co/), [MMDetection](https://github.com/open-mmlab/mmdetection) and more. With just a few lines of code, you can train and deploy high accuracy computer vision models for your application. + + # Demo