diff --git a/.github/workflows/unittest.yml b/.github/workflows/unittest.yml index 7d7f3b3077..edd93e9cd5 100644 --- a/.github/workflows/unittest.yml +++ b/.github/workflows/unittest.yml @@ -39,17 +39,9 @@ jobs: shell: bash -l {0} run: | conda env create -n gluon_cv_py3_test -f tests/py3_mxnet_ci.yml - conda env update -n gluon_cv_py3_test -f tests/py3_mxnet_ci.yml --prune conda activate gluon_cv_py3_test - conda list - export CUDA_VISIBLE_DEVICES=0 - export KMP_DUPLICATE_LIB_OK=TRUE - make clean - pip install --upgrade --force-reinstall --no-deps . - env - export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64 - export MPLBACKEND=Agg - export MXNET_CUDNN_AUTOTUNE_DEFAULT=0 + pip install --upgrade pip setuptools wheel + pip install --upgrade -e . export TINY_COCO=~/.mxnet/datasets/tiny_coco export TINY_MOTORBIKE=~/.mxnet/datasets/tiny_motorbike mkdir -p $TINY_COCO/annotations diff --git a/README.md b/README.md index 9e88b6a851..e59860b351 100644 --- a/README.md +++ b/README.md @@ -26,6 +26,9 @@ models. This toolkit offers four main features: 4. Carefully designed APIs that greatly reduce the implementation complexity 5. Community supports +Please also checkout [AutoGluon](https://github.com/autogluon/autogluon) if you have [image classification](https://auto.gluon.ai/stable/tutorials/multimodal/image_prediction/index.html) or [object detection](https://auto.gluon.ai/stable/tutorials/multimodal/object_detection/index.html) needs. We have built the [MultimodalPredictor](https://auto.gluon.ai/stable/tutorials/multimodal/index.html) with an improved model zoo, including [TIMM](https://github.com/rwightman/pytorch-image-models), [Huggingface](https://huggingface.co/), [MMDetection](https://github.com/open-mmlab/mmdetection) and more. With just a few lines of code, you can train and deploy high accuracy computer vision models for your application. + + # Demo
diff --git a/docs/tutorials/index.rst b/docs/tutorials/index.rst index a8e2dea763..b7bd11c3e7 100644 --- a/docs/tutorials/index.rst +++ b/docs/tutorials/index.rst @@ -3,6 +3,10 @@ Apache MXNet Tutorials Interested in getting started in a new CV area? Here are some tutorials to help get started. +Note: For image classification or object detection tasks, feel free to explore tutorials in +`AutoGluon MultiModalPredictor `_ with better support in PyTorch. + + Image Classification -------------------- diff --git a/gluoncv/torch/data/video_cls/multigrid_helper.py b/gluoncv/torch/data/video_cls/multigrid_helper.py index 05fc2533bf..96f12ed14a 100644 --- a/gluoncv/torch/data/video_cls/multigrid_helper.py +++ b/gluoncv/torch/data/video_cls/multigrid_helper.py @@ -3,7 +3,7 @@ import numpy as np from torch.utils.data import Sampler -from torch._six import int_classes as _int_classes +_int_classes = int __all__ = ['multiGridHelper', 'MultiGridBatchSampler'] diff --git a/tests/py3_mxnet_ci.yml b/tests/py3_mxnet_ci.yml index 222f711425..e76876438b 100644 --- a/tests/py3_mxnet_ci.yml +++ b/tests/py3_mxnet_ci.yml @@ -3,26 +3,10 @@ channels: - conda-forge - defaults dependencies: - - python=3.6 - - perl - - sphinx=1.7.2 + - python=3.7 - nose - coverage=4.5.4 - - scipy - - cython - - pip=20.2.4 - - requests==2.27.1 - - matplotlib - - tqdm - - pillow - pip: - mxnet - coverage-badge - - awscli - nose-timer - - opencv-python - - git+https://github.com/zhanghang1989/detail-api.git#subdirectory=PythonAPI - - portalocker - - autocfg>=0.0.6 - - boto3 - - autogluon.core==0.2.0