-
Notifications
You must be signed in to change notification settings - Fork 0
/
vending_app.py
226 lines (197 loc) · 7.1 KB
/
vending_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from ultralytics import YOLO
import streamlit as st
import cv2
from PIL import Image
import tempfile
import time
def _display_detected_frames(conf, model, st_frame, image, box_b, box_r):
"""
Display the detected objects on a video frame using the YOLOv8 model.
:param conf (float): Confidence threshold for object detection.
:param model (YOLOv8): An instance of the `YOLOv8` class containing the YOLOv8 model.
:param st_frame (Streamlit object): A Streamlit object to display the detected video.
:param image (numpy array): A numpy array representing the video frame.
:return: None
"""
t1 = time.time()
# Resize the image to a standard size
image = cv2.resize(image, (720, int(720 * (9 / 16))))
# Predict the objects in the image using YOLOv8 model
res = model.predict(image, conf=conf)
# Plot the detected objects on the video frame
res_plotted = res[0].plot()
st_frame.image(res_plotted,
caption='Detected Video',
channels="BGR",
use_column_width=True
)
num_brown = 0
num_red = 0
for pred in res[0].boxes.cls:
if pred == 0:
num_brown += 1
elif pred == 1:
num_red += 1
t2 = time.time()
box_b.subheader(f"Number of brown: {num_brown}")
box_r.subheader(f"Number of red: {num_red}")
box_r.text(f"Time: {t2-t1:.4f}s")
@st.cache_resource
def load_model(model_path):
"""
Loads a YOLO object detection model from the specified model_path.
Parameters:
model_path (str): The path to the YOLO model file.
Returns:
A YOLO object detection model.
"""
model = YOLO(model_path)
return model
def infer_uploaded_image(conf, model):
"""
Execute inference for uploaded image
:param conf: Confidence of YOLOv8 model
:param model: An instance of the `YOLOv8` class containing the YOLOv8 model.
:return: None
"""
source_img = st.sidebar.file_uploader(
label="Choose an image...",
type=("jpg", "jpeg", "png", 'bmp', 'webp')
)
col1, col2 = st.columns(2)
with col1:
if source_img:
uploaded_image = Image.open(source_img)
# adding the uploaded image to the page with caption
st.image(
image=source_img,
caption="Uploaded Image",
use_column_width=True
)
t1 = time.time()
if source_img:
if st.button("Execution"):
with st.spinner("Running..."):
res = model.predict(uploaded_image,
conf=conf)
boxes = res[0].boxes
res_plotted = res[0].plot()[:, :, ::-1]
num_brown = 0
num_red = 0
for pred in res[0].boxes.cls:
if pred == 0:
num_brown += 1
elif pred == 1:
num_red += 1
with col2:
t2 = time.time()
st.image(res_plotted,
caption="Detected Image",
use_column_width=True)
st.subheader(f"Number of brown: {num_brown}")
st.subheader(f"Number of red: {num_red}")
st.text(f"Time: {t2-t1:.4f}s")
def infer_uploaded_video(conf, model):
"""
Execute inference for uploaded video
:param conf: Confidence of YOLOv8 model
:param model: An instance of the `YOLOv8` class containing the YOLOv8 model.
:return: None
"""
source_video = st.sidebar.file_uploader(
label="Choose a video..."
)
if source_video:
st.video(source_video)
if source_video:
if st.button("Execution"):
with st.spinner("Running..."):
try:
tfile = tempfile.NamedTemporaryFile()
tfile.write(source_video.read())
vid_cap = cv2.VideoCapture(
tfile.name)
st_frame = st.empty()
b1 = st.empty()
b2 = st.empty()
while (vid_cap.isOpened()):
success, image = vid_cap.read()
if success:
_display_detected_frames(conf,
model,
st_frame,
image,
b1,
b2
)
else:
vid_cap.release()
break
except Exception as e:
st.error(f"Error loading video: {e}")
def infer_uploaded_webcam(conf, model):
"""
Execute inference for webcam.
:param conf: Confidence of YOLOv8 model
:param model: An instance of the `YOLOv8` class containing the YOLOv8 model.
:return: None
"""
try:
flag = st.button(
label="Stop running"
)
vid_cap = cv2.VideoCapture(0) # local camera
st_frame = st.empty()
b1 = st.empty()
b2 = st.empty()
while not flag:
success, image = vid_cap.read()
if success:
_display_detected_frames(
conf,
model,
st_frame,
image,
b1,
b2
)
else:
vid_cap.release()
break
except Exception as e:
st.error(f"Error loading video: {str(e)}")
def main():
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from pathlib import Path
from PIL import Image
import streamlit as st
# setting page layout
st.set_page_config(
page_title="Interactive Interface for YOLOv8",
page_icon="🤖",
layout="wide",
initial_sidebar_state="expanded"
)
# main page heading
st.title("Interactive Interface for YOLOv8")
# load pretrained DL model
model = load_model('/code/Vending-YOLOv8n.onnx')
# image/video options
st.sidebar.header("Image/Video Config")
source_selectbox = st.sidebar.selectbox(
"Select Source",
["Image", "Video", "Webcam"]
)
source_img = None
confidence = 0.5
if source_selectbox == "Image": # Image
infer_uploaded_image(confidence, model)
elif source_selectbox == "Video": # Video
infer_uploaded_video(confidence, model)
elif source_selectbox == "Webcam": # Webcam
infer_uploaded_webcam(confidence, model)
else:
st.error("Currently only 'Image' and 'Video' source are implemented")
if __name__ == "__main__":
main()