comments | difficulty | edit_url | tags | |||||
---|---|---|---|---|---|---|---|---|
true |
简单 |
|
给你一个整数数组 nums
,其中元素已经按 升序 排列,请你将其转换为一棵 平衡 二叉搜索树。
示例 1:
输入:nums = [-10,-3,0,5,9] 输出:[0,-3,9,-10,null,5] 解释:[0,-10,5,null,-3,null,9] 也将被视为正确答案:
示例 2:
输入:nums = [1,3] 输出:[3,1] 解释:[1,null,3] 和 [3,1] 都是高度平衡二叉搜索树。
提示:
1 <= nums.length <= 104
-104 <= nums[i] <= 104
nums
按 严格递增 顺序排列
我们设计一个递归函数 nums
的下标范围
函数
- 如果
$l > r$ ,说明当前数组为空,返回null
。 - 如果
$l \leq r$ ,取数组中下标为$mid = \lfloor \frac{l + r}{2} \rfloor$ 的元素作为当前二叉搜索树的根节点,其中$\lfloor x \rfloor$ 表示对$x$ 向下取整。 - 递归地构造当前二叉搜索树的左子树,其根节点的值为数组中下标为
$mid - 1$ 的元素,左子树的节点值都在数组的下标范围$[l, mid - 1]$ 内。 - 递归地构造当前二叉搜索树的右子树,其根节点的值为数组中下标为
$mid + 1$ 的元素,右子树的节点值都在数组的下标范围$[mid + 1, r]$ 内。 - 返回当前二叉搜索树的根节点。
答案即为函数
时间复杂度 nums
的长度。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def sortedArrayToBST(self, nums: List[int]) -> Optional[TreeNode]:
def dfs(l, r):
if l > r:
return None
mid = (l + r) >> 1
left = dfs(l, mid - 1)
right = dfs(mid + 1, r)
return TreeNode(nums[mid], left, right)
return dfs(0, len(nums) - 1)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private int[] nums;
public TreeNode sortedArrayToBST(int[] nums) {
this.nums = nums;
return dfs(0, nums.length - 1);
}
private TreeNode dfs(int l, int r) {
if (l > r) {
return null;
}
int mid = (l + r) >> 1;
TreeNode left = dfs(l, mid - 1);
TreeNode right = dfs(mid + 1, r);
return new TreeNode(nums[mid], left, right);
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* sortedArrayToBST(vector<int>& nums) {
function<TreeNode*(int, int)> dfs = [&](int l, int r) -> TreeNode* {
if (l > r) {
return nullptr;
}
int mid = (l + r) >> 1;
auto left = dfs(l, mid - 1);
auto right = dfs(mid + 1, r);
return new TreeNode(nums[mid], left, right);
};
return dfs(0, nums.size() - 1);
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func sortedArrayToBST(nums []int) *TreeNode {
var dfs func(int, int) *TreeNode
dfs = func(l, r int) *TreeNode {
if l > r {
return nil
}
mid := (l + r) >> 1
left, right := dfs(l, mid-1), dfs(mid+1, r)
return &TreeNode{nums[mid], left, right}
}
return dfs(0, len(nums)-1)
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function sortedArrayToBST(nums: number[]): TreeNode | null {
const n = nums.length;
if (n === 0) {
return null;
}
const mid = n >> 1;
return new TreeNode(
nums[mid],
sortedArrayToBST(nums.slice(0, mid)),
sortedArrayToBST(nums.slice(mid + 1)),
);
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
fn to_bst(nums: &Vec<i32>, start: usize, end: usize) -> Option<Rc<RefCell<TreeNode>>> {
if start >= end {
return None;
}
let mid = start + (end - start) / 2;
Some(Rc::new(RefCell::new(TreeNode {
val: nums[mid],
left: Self::to_bst(nums, start, mid),
right: Self::to_bst(nums, mid + 1, end),
})))
}
pub fn sorted_array_to_bst(nums: Vec<i32>) -> Option<Rc<RefCell<TreeNode>>> {
Self::to_bst(&nums, 0, nums.len())
}
}
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {number[]} nums
* @return {TreeNode}
*/
var sortedArrayToBST = function (nums) {
const dfs = (l, r) => {
if (l > r) {
return null;
}
const mid = (l + r) >> 1;
const left = dfs(l, mid - 1);
const right = dfs(mid + 1, r);
return new TreeNode(nums[mid], left, right);
};
return dfs(0, nums.length - 1);
};