comments | difficulty | edit_url | tags | ||||
---|---|---|---|---|---|---|---|
true |
中等 |
|
你这个学期必须选修 numCourses
门课程,记为 0
到 numCourses - 1
。
在选修某些课程之前需要一些先修课程。 先修课程按数组 prerequisites
给出,其中 prerequisites[i] = [ai, bi]
,表示如果要学习课程 ai
则 必须 先学习课程 bi
。
- 例如,先修课程对
[0, 1]
表示:想要学习课程0
,你需要先完成课程1
。
请你判断是否可能完成所有课程的学习?如果可以,返回 true
;否则,返回 false
。
示例 1:
输入:numCourses = 2, prerequisites = [[1,0]] 输出:true 解释:总共有 2 门课程。学习课程 1 之前,你需要完成课程 0 。这是可能的。
示例 2:
输入:numCourses = 2, prerequisites = [[1,0],[0,1]] 输出:false 解释:总共有 2 门课程。学习课程 1 之前,你需要先完成课程 0 ;并且学习课程 0 之前,你还应先完成课程 1 。这是不可能的。
提示:
1 <= numCourses <= 2000
0 <= prerequisites.length <= 5000
prerequisites[i].length == 2
0 <= ai, bi < numCourses
prerequisites[i]
中的所有课程对 互不相同
对于本题,我们可以将课程看作图中的节点,先修课程看作图中的边,那么我们可以将本题转化为判断有向图中是否存在环。
具体地,我们可以使用拓扑排序的思想,对于每个入度为
如果所有节点都被遍历到,说明图中不存在环,那么我们就可以完成所有课程的学习;否则,我们就无法完成所有课程的学习。
时间复杂度
class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
g = defaultdict(list)
indeg = [0] * numCourses
for a, b in prerequisites:
g[b].append(a)
indeg[a] += 1
cnt = 0
q = deque(i for i, x in enumerate(indeg) if x == 0)
while q:
i = q.popleft()
cnt += 1
for j in g[i]:
indeg[j] -= 1
if indeg[j] == 0:
q.append(j)
return cnt == numCourses
class Solution {
public boolean canFinish(int numCourses, int[][] prerequisites) {
List<Integer>[] g = new List[numCourses];
Arrays.setAll(g, k -> new ArrayList<>());
int[] indeg = new int[numCourses];
for (var p : prerequisites) {
int a = p[0], b = p[1];
g[b].add(a);
++indeg[a];
}
Deque<Integer> q = new ArrayDeque<>();
for (int i = 0; i < numCourses; ++i) {
if (indeg[i] == 0) {
q.offer(i);
}
}
int cnt = 0;
while (!q.isEmpty()) {
int i = q.poll();
++cnt;
for (int j : g[i]) {
if (--indeg[j] == 0) {
q.offer(j);
}
}
}
return cnt == numCourses;
}
}
class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> g(numCourses);
vector<int> indeg(numCourses);
for (auto& p : prerequisites) {
int a = p[0], b = p[1];
g[b].push_back(a);
++indeg[a];
}
queue<int> q;
for (int i = 0; i < numCourses; ++i) {
if (indeg[i] == 0) {
q.push(i);
}
}
int cnt = 0;
while (!q.empty()) {
int i = q.front();
q.pop();
++cnt;
for (int j : g[i]) {
if (--indeg[j] == 0) {
q.push(j);
}
}
}
return cnt == numCourses;
}
};
func canFinish(numCourses int, prerequisites [][]int) bool {
g := make([][]int, numCourses)
indeg := make([]int, numCourses)
for _, p := range prerequisites {
a, b := p[0], p[1]
g[b] = append(g[b], a)
indeg[a]++
}
q := []int{}
for i, x := range indeg {
if x == 0 {
q = append(q, i)
}
}
cnt := 0
for len(q) > 0 {
i := q[0]
q = q[1:]
cnt++
for _, j := range g[i] {
indeg[j]--
if indeg[j] == 0 {
q = append(q, j)
}
}
}
return cnt == numCourses
}
function canFinish(numCourses: number, prerequisites: number[][]): boolean {
const g: number[][] = new Array(numCourses).fill(0).map(() => []);
const indeg: number[] = new Array(numCourses).fill(0);
for (const [a, b] of prerequisites) {
g[b].push(a);
indeg[a]++;
}
const q: number[] = [];
for (let i = 0; i < numCourses; ++i) {
if (indeg[i] == 0) {
q.push(i);
}
}
let cnt = 0;
while (q.length) {
const i = q.shift()!;
cnt++;
for (const j of g[i]) {
if (--indeg[j] == 0) {
q.push(j);
}
}
}
return cnt == numCourses;
}
use std::collections::VecDeque;
impl Solution {
#[allow(dead_code)]
pub fn can_finish(num_course: i32, prerequisites: Vec<Vec<i32>>) -> bool {
let num_course = num_course as usize;
// The graph representation
let mut graph: Vec<Vec<i32>> = vec![vec![]; num_course];
// Record the in degree for each node
let mut in_degree_vec: Vec<i32> = vec![0; num_course];
let mut q: VecDeque<usize> = VecDeque::new();
let mut count = 0;
// Initialize the graph & in degree vector
for p in &prerequisites {
let (from, to) = (p[0], p[1]);
graph[from as usize].push(to);
in_degree_vec[to as usize] += 1;
}
// Enqueue the first batch of nodes with in degree 0
for i in 0..num_course {
if in_degree_vec[i] == 0 {
q.push_back(i);
}
}
// Begin the traverse & update through the graph
while !q.is_empty() {
// Get the current node index
let index = q.front().unwrap().clone();
// This course can be finished
count += 1;
q.pop_front();
for i in &graph[index] {
// Update the in degree for the current node
in_degree_vec[*i as usize] -= 1;
// See if can be enqueued
if in_degree_vec[*i as usize] == 0 {
q.push_back(*i as usize);
}
}
}
count == num_course
}
}
public class Solution {
public bool CanFinish(int numCourses, int[][] prerequisites) {
var g = new List<int>[numCourses];
for (int i = 0; i < numCourses; ++i) {
g[i] = new List<int>();
}
var indeg = new int[numCourses];
foreach (var p in prerequisites) {
int a = p[0], b = p[1];
g[b].Add(a);
++indeg[a];
}
var q = new Queue<int>();
for (int i = 0; i < numCourses; ++i) {
if (indeg[i] == 0) {
q.Enqueue(i);
}
}
var cnt = 0;
while (q.Count > 0) {
int i = q.Dequeue();
++cnt;
foreach (int j in g[i]) {
if (--indeg[j] == 0) {
q.Enqueue(j);
}
}
}
return cnt == numCourses;
}
}