Skip to content

Latest commit

 

History

History
375 lines (313 loc) · 8.38 KB

File metadata and controls

375 lines (313 loc) · 8.38 KB
comments difficulty edit_url tags
true
中等
深度优先搜索
广度优先搜索
并查集

English Version

题目描述

给定编号从 0n - 1 的 n 个结点。给定一个整数 n 和一个 edges 列表,其中 edges[i] = [ai, bi] 表示图中节点 ai 和 bi 之间存在一条无向边。

如果这些边能够形成一个合法有效的树结构,则返回 true ,否则返回 false

 

示例 1:

输入: n = 5, edges = [[0,1],[0,2],[0,3],[1,4]]
输出: true

示例 2:

输入: n = 5, edges = [[0,1],[1,2],[2,3],[1,3],[1,4]]
输出: false

 

提示:

  • 1 <= n <= 2000
  • 0 <= edges.length <= 5000
  • edges[i].length == 2
  • 0 <= ai, bi < n
  • ai != bi
  • 不存在自循环或重复的边

解法

方法一:并查集

判断是否是树,需要满足以下两个条件:

  1. 边的数量等于节点数减一;
  2. 不存在环。

我们可以使用并查集来判断是否存在环。遍历边,如果两个节点已经在同一个集合中,说明存在环。否则,我们将两个节点合并到同一个集合中。然后将连通分量的数量减一,最后判断连通分量的数量是否为 $1$

时间复杂度 $O(n \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 是节点数。

Python3

class Solution:
    def validTree(self, n: int, edges: List[List[int]]) -> bool:
        def find(x: int) -> int:
            if p[x] != x:
                p[x] = find(p[x])
            return p[x]

        p = list(range(n))
        for a, b in edges:
            pa, pb = find(a), find(b)
            if pa == pb:
                return False
            p[pa] = pb
            n -= 1
        return n == 1

Java

class Solution {
    private int[] p;

    public boolean validTree(int n, int[][] edges) {
        p = new int[n];
        for (int i = 0; i < n; ++i) {
            p[i] = i;
        }
        for (var e : edges) {
            int pa = find(e[0]), pb = find(e[1]);
            if (pa == pb) {
                return false;
            }
            p[pa] = pb;
            --n;
        }
        return n == 1;
    }

    private int find(int x) {
        if (p[x] != x) {
            p[x] = find(p[x]);
        }
        return p[x];
    }
}

C++

class Solution {
public:
    bool validTree(int n, vector<vector<int>>& edges) {
        vector<int> p(n);
        iota(p.begin(), p.end(), 0);
        function<int(int)> find = [&](int x) {
            if (p[x] != x) {
                p[x] = find(p[x]);
            }
            return p[x];
        };
        for (auto& e : edges) {
            int pa = find(e[0]), pb = find(e[1]);
            if (pa == pb) {
                return false;
            }
            p[pa] = pb;
            --n;
        }
        return n == 1;
    }
};

Go

func validTree(n int, edges [][]int) bool {
	p := make([]int, n)
	for i := range p {
		p[i] = i
	}
	var find func(int) int
	find = func(x int) int {
		if p[x] != x {
			p[x] = find(p[x])
		}
		return p[x]
	}
	for _, e := range edges {
		pa, pb := find(e[0]), find(e[1])
		if pa == pb {
			return false
		}
		p[pa] = pb
		n--
	}
	return n == 1
}

JavaScript

/**
 * @param {number} n
 * @param {number[][]} edges
 * @return {boolean}
 */
var validTree = function (n, edges) {
    const p = Array.from({ length: n }, (_, i) => i);
    const find = x => {
        if (p[x] !== x) {
            p[x] = find(p[x]);
        }
        return p[x];
    };
    for (const [a, b] of edges) {
        const pa = find(a);
        const pb = find(b);
        if (pa === pb) {
            return false;
        }
        p[pa] = pb;
        --n;
    }
    return n === 1;
};

方法二:DFS

我们也可以使用深度优先搜索来判断是否存在环。我们可以使用一个数组 $vis$ 来记录访问过的节点,搜索时,我们先将节点标记为已访问,然后遍历与该节点相邻的节点,如果相邻节点已经访问过,则跳过,否则递归访问相邻节点。最后,我们判断是否所有节点都被访问过,如果有未访问过的节点,说明无法构成树,返回 false

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是节点数。

Python3

class Solution:
    def validTree(self, n: int, edges: List[List[int]]) -> bool:
        def dfs(i: int):
            vis.add(i)
            for j in g[i]:
                if j not in vis:
                    dfs(j)

        if len(edges) != n - 1:
            return False
        g = [[] for _ in range(n)]
        for a, b in edges:
            g[a].append(b)
            g[b].append(a)
        vis = set()
        dfs(0)
        return len(vis) == n

Java

class Solution {
    private List<Integer>[] g;
    private Set<Integer> vis = new HashSet<>();

    public boolean validTree(int n, int[][] edges) {
        if (edges.length != n - 1) {
            return false;
        }
        g = new List[n];
        Arrays.setAll(g, k -> new ArrayList<>());
        for (var e : edges) {
            int a = e[0], b = e[1];
            g[a].add(b);
            g[b].add(a);
        }
        dfs(0);
        return vis.size() == n;
    }

    private void dfs(int i) {
        vis.add(i);
        for (int j : g[i]) {
            if (!vis.contains(j)) {
                dfs(j);
            }
        }
    }
}

C++

class Solution {
public:
    bool validTree(int n, vector<vector<int>>& edges) {
        if (edges.size() != n - 1) {
            return false;
        }
        vector<int> g[n];
        vector<int> vis(n);
        function<void(int)> dfs = [&](int i) {
            vis[i] = true;
            --n;
            for (int j : g[i]) {
                if (!vis[j]) {
                    dfs(j);
                }
            }
        };
        for (auto& e : edges) {
            int a = e[0], b = e[1];
            g[a].push_back(b);
            g[b].push_back(a);
        }
        dfs(0);
        return n == 0;
    }
};

Go

func validTree(n int, edges [][]int) bool {
	if len(edges) != n-1 {
		return false
	}
	g := make([][]int, n)
	vis := make([]bool, n)
	for _, e := range edges {
		a, b := e[0], e[1]
		g[a] = append(g[a], b)
		g[b] = append(g[b], a)
	}
	var dfs func(int)
	dfs = func(i int) {
		vis[i] = true
		n--
		for _, j := range g[i] {
			if !vis[j] {
				dfs(j)
			}
		}
	}
	dfs(0)
	return n == 0
}

JavaScript

/**
 * @param {number} n
 * @param {number[][]} edges
 * @return {boolean}
 */
var validTree = function (n, edges) {
    if (edges.length !== n - 1) {
        return false;
    }
    const g = Array.from({ length: n }, () => []);
    const vis = Array.from({ length: n }, () => false);
    for (const [a, b] of edges) {
        g[a].push(b);
        g[b].push(a);
    }
    const dfs = i => {
        vis[i] = true;
        --n;
        for (const j of g[i]) {
            if (!vis[j]) {
                dfs(j);
            }
        }
    };
    dfs(0);
    return n === 0;
};