Skip to content

Latest commit

 

History

History
516 lines (434 loc) · 12.1 KB

File metadata and controls

516 lines (434 loc) · 12.1 KB
comments difficulty edit_url tags
true
中等
数组
二分查找
有序集合
单调栈

English Version

题目描述

给你一个整数数组 nums ,数组中共有 n 个整数。132 模式的子序列 由三个整数 nums[i]nums[j]nums[k] 组成,并同时满足:i < j < knums[i] < nums[k] < nums[j]

如果 nums 中存在 132 模式的子序列 ,返回 true ;否则,返回 false

 

示例 1:

输入:nums = [1,2,3,4]
输出:false
解释:序列中不存在 132 模式的子序列。

示例 2:

输入:nums = [3,1,4,2]
输出:true
解释:序列中有 1 个 132 模式的子序列: [1, 4, 2] 。

示例 3:

输入:nums = [-1,3,2,0]
输出:true
解释:序列中有 3 个 132 模式的的子序列:[-1, 3, 2]、[-1, 3, 0] 和 [-1, 2, 0] 。

 

提示:

  • n == nums.length
  • 1 <= n <= 2 * 105
  • -109 <= nums[i] <= 109

解法

方法一:单调栈

我们可以枚举从右往左枚举整数 $nums[i]$,并维护一个单调栈,栈中的元素从栈底到栈顶单调递减。维护一个变量 $vk$,表示 $nums[i]$ 右侧且小于 $nums[i]$ 的最大值。初始时,$vk$ 的值为 $-\infty$

我们从右往左遍历数组,对于遍历到的每个元素 $nums[i]$,如果 $nums[i]$ 小于 $vk$,则说明我们找到了一个满足 $nums[i] \lt nums[k] \lt nums[j]$ 的三元组,返回 true。否则,如果栈顶元素小于 $nums[i]$,则我们循环将栈顶元素出栈,并且更新 $vk$ 的值为出栈元素,直到栈为空或者栈顶元素大于等于 $nums[i]$。最后,我们将 $nums[i]$ 入栈。

如果遍历结束后仍未找到满足条件的三元组,说明不存在这样的三元组,返回 false

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为数组的长度。

Python3

class Solution:
    def find132pattern(self, nums: List[int]) -> bool:
        vk = -inf
        stk = []
        for x in nums[::-1]:
            if x < vk:
                return True
            while stk and stk[-1] < x:
                vk = stk.pop()
            stk.append(x)
        return False

Java

class Solution {
    public boolean find132pattern(int[] nums) {
        int vk = -(1 << 30);
        Deque<Integer> stk = new ArrayDeque<>();
        for (int i = nums.length - 1; i >= 0; --i) {
            if (nums[i] < vk) {
                return true;
            }
            while (!stk.isEmpty() && stk.peek() < nums[i]) {
                vk = stk.pop();
            }
            stk.push(nums[i]);
        }
        return false;
    }
}

C++

class Solution {
public:
    bool find132pattern(vector<int>& nums) {
        int vk = INT_MIN;
        stack<int> stk;
        for (int i = nums.size() - 1; ~i; --i) {
            if (nums[i] < vk) {
                return true;
            }
            while (!stk.empty() && stk.top() < nums[i]) {
                vk = stk.top();
                stk.pop();
            }
            stk.push(nums[i]);
        }
        return false;
    }
};

Go

func find132pattern(nums []int) bool {
	vk := -(1 << 30)
	stk := []int{}
	for i := len(nums) - 1; i >= 0; i-- {
		if nums[i] < vk {
			return true
		}
		for len(stk) > 0 && stk[len(stk)-1] < nums[i] {
			vk = stk[len(stk)-1]
			stk = stk[:len(stk)-1]
		}
		stk = append(stk, nums[i])
	}
	return false
}

TypeScript

function find132pattern(nums: number[]): boolean {
    let vk = -Infinity;
    const stk: number[] = [];
    for (let i = nums.length - 1; i >= 0; --i) {
        if (nums[i] < vk) {
            return true;
        }
        while (stk.length && stk[stk.length - 1] < nums[i]) {
            vk = stk.pop()!;
        }
        stk.push(nums[i]);
    }
    return false;
}

Rust

impl Solution {
    pub fn find132pattern(nums: Vec<i32>) -> bool {
        let n = nums.len();
        let mut vk = i32::MIN;
        let mut stk = vec![];
        for i in (0..n).rev() {
            if nums[i] < vk {
                return true;
            }
            while !stk.is_empty() && stk.last().unwrap() < &nums[i] {
                vk = stk.pop().unwrap();
            }
            stk.push(nums[i]);
        }
        false
    }
}

方法二:离散化 + 树状数组

我们可以用树状数组维护比某个数小的元素的个数,用一个数组 $left$ 记录 $nums[i]$ 左侧的最小值。

我们从右往左遍历数组,对于遍历到的每个元素 $nums[i]$,我们将 $nums[i]$ 离散化为一个整数 $x$,将 $left[i]$ 离散化为一个整数 $y$,如果此时 $x \gt y$,并且树状数组中存在比 $y$ 大但比 $x$ 小的元素,则说明存在满足 $nums[i] \lt nums[k] \lt nums[j]$ 的三元组,返回 true。否则,我们将 $nums[i]$ 的离散化结果 $x$ 更新到树状数组中。

如果遍历结束后仍未找到满足条件的三元组,说明不存在这样的三元组,返回 false

时间复杂度 $O(n \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 为数组的长度。

Python3

class BinaryIndexedTree:
    def __init__(self, n):
        self.n = n
        self.c = [0] * (n + 1)

    def update(self, x, delta):
        while x <= self.n:
            self.c[x] += delta
            x += x & -x

    def query(self, x):
        s = 0
        while x:
            s += self.c[x]
            x -= x & -x
        return s


class Solution:
    def find132pattern(self, nums: List[int]) -> bool:
        s = sorted(set(nums))
        n = len(nums)
        left = [inf] * (n + 1)
        for i, x in enumerate(nums):
            left[i + 1] = min(left[i], x)
        tree = BinaryIndexedTree(len(s))
        for i in range(n - 1, -1, -1):
            x = bisect_left(s, nums[i]) + 1
            y = bisect_left(s, left[i]) + 1
            if x > y and tree.query(x - 1) > tree.query(y):
                return True
            tree.update(x, 1)
        return False

Java

class BinaryIndexedTree {
    private int n;
    private int[] c;

    public BinaryIndexedTree(int n) {
        this.n = n;
        c = new int[n + 1];
    }

    public void update(int x, int v) {
        while (x <= n) {
            c[x] += v;
            x += x & -x;
        }
    }

    public int query(int x) {
        int s = 0;
        while (x > 0) {
            s += c[x];
            x -= x & -x;
        }
        return s;
    }
}

class Solution {
    public boolean find132pattern(int[] nums) {
        int[] s = nums.clone();
        Arrays.sort(s);
        int n = nums.length;
        int m = 0;
        int[] left = new int[n + 1];
        left[0] = 1 << 30;
        for (int i = 0; i < n; ++i) {
            left[i + 1] = Math.min(left[i], nums[i]);
            if (i == 0 || s[i] != s[i - 1]) {
                s[m++] = s[i];
            }
        }
        BinaryIndexedTree tree = new BinaryIndexedTree(m);
        for (int i = n - 1; i >= 0; --i) {
            int x = search(s, m, nums[i]);
            int y = search(s, m, left[i]);
            if (x > y && tree.query(x - 1) > tree.query(y)) {
                return true;
            }
            tree.update(x, 1);
        }
        return false;
    }

    private int search(int[] nums, int r, int x) {
        int l = 0;
        while (l < r) {
            int mid = (l + r) >> 1;
            if (nums[mid] >= x) {
                r = mid;
            } else {
                l = mid + 1;
            }
        }
        return l + 1;
    }
}

C++

class BinaryIndexedTree {
public:
    BinaryIndexedTree(int n) {
        this->n = n;
        this->c = vector<int>(n + 1, 0);
    }

    void update(int x, int val) {
        while (x <= n) {
            c[x] += val;
            x += x & -x;
        }
    }

    int query(int x) {
        int s = 0;
        while (x > 0) {
            s += c[x];
            x -= x & -x;
        }
        return s;
    }

private:
    int n;
    vector<int> c;
};

class Solution {
public:
    bool find132pattern(vector<int>& nums) {
        vector<int> s = nums;
        sort(s.begin(), s.end());
        s.erase(unique(s.begin(), s.end()), s.end());
        BinaryIndexedTree tree(s.size());
        int n = nums.size();
        int left[n + 1];
        memset(left, 63, sizeof(left));
        for (int i = 0; i < n; ++i) {
            left[i + 1] = min(left[i], nums[i]);
        }
        for (int i = nums.size() - 1; ~i; --i) {
            int x = lower_bound(s.begin(), s.end(), nums[i]) - s.begin() + 1;
            int y = lower_bound(s.begin(), s.end(), left[i]) - s.begin() + 1;
            if (x > y && tree.query(x - 1) > tree.query(y)) {
                return true;
            }
            tree.update(x, 1);
        }
        return false;
    }
};

Go

type BinaryIndexedTree struct {
	n int
	c []int
}

func newBinaryIndexedTree(n int) *BinaryIndexedTree {
	c := make([]int, n+1)
	return &BinaryIndexedTree{n, c}
}

func (this *BinaryIndexedTree) update(x, val int) {
	for x <= this.n {
		this.c[x] += val
		x += x & -x
	}
}

func (this *BinaryIndexedTree) query(x int) int {
	s := 0
	for x > 0 {
		s += this.c[x]
		x -= x & -x
	}
	return s
}

func find132pattern(nums []int) bool {
	n := len(nums)
	s := make([]int, n)
	left := make([]int, n+1)
	left[0] = 1 << 30
	copy(s, nums)
	sort.Ints(s)
	m := 0
	for i := 0; i < n; i++ {
		left[i+1] = min(left[i], nums[i])
		if i == 0 || s[i] != s[i-1] {
			s[m] = s[i]
			m++
		}
	}
	s = s[:m]
	tree := newBinaryIndexedTree(m)
	for i := n - 1; i >= 0; i-- {
		x := sort.SearchInts(s, nums[i]) + 1
		y := sort.SearchInts(s, left[i]) + 1
		if x > y && tree.query(x-1) > tree.query(y) {
			return true
		}
		tree.update(x, 1)
	}
	return false
}

TypeScript

class BinaryIndextedTree {
    n: number;
    c: number[];

    constructor(n: number) {
        this.n = n;
        this.c = new Array(n + 1).fill(0);
    }

    update(x: number, val: number): void {
        while (x <= this.n) {
            this.c[x] += val;
            x += x & -x;
        }
    }

    query(x: number): number {
        let s = 0;
        while (x) {
            s += this.c[x];
            x -= x & -x;
        }
        return s;
    }
}

function find132pattern(nums: number[]): boolean {
    let s: number[] = [...nums];
    s.sort((a, b) => a - b);
    const n = nums.length;
    const left: number[] = new Array(n + 1).fill(1 << 30);
    let m = 0;
    for (let i = 0; i < n; ++i) {
        left[i + 1] = Math.min(left[i], nums[i]);
        if (i == 0 || s[i] != s[i - 1]) {
            s[m++] = s[i];
        }
    }
    s = s.slice(0, m);
    const tree = new BinaryIndextedTree(m);
    for (let i = n - 1; i >= 0; --i) {
        const x = search(s, nums[i]);
        const y = search(s, left[i]);
        if (x > y && tree.query(x - 1) > tree.query(y)) {
            return true;
        }
        tree.update(x, 1);
    }
    return false;
}

function search(nums: number[], x: number): number {
    let l = 0,
        r = nums.length - 1;
    while (l < r) {
        const mid = (l + r) >> 1;
        if (nums[mid] >= x) {
            r = mid;
        } else {
            l = mid + 1;
        }
    }
    return l + 1;
}