comments | difficulty | edit_url | tags | |
---|---|---|---|---|
true |
Easy |
|
A perfect number is a positive integer that is equal to the sum of its positive divisors, excluding the number itself. A divisor of an integer x
is an integer that can divide x
evenly.
Given an integer n
, return true
if n
is a perfect number, otherwise return false
.
Example 1:
Input: num = 28 Output: true Explanation: 28 = 1 + 2 + 4 + 7 + 14 1, 2, 4, 7, and 14 are all divisors of 28.
Example 2:
Input: num = 7 Output: false
Constraints:
1 <= num <= 108
First, we check if
Next, we enumerate all positive divisors of
Finally, we check if
The time complexity is
class Solution:
def checkPerfectNumber(self, num: int) -> bool:
if num == 1:
return False
s, i = 1, 2
while i <= num // i:
if num % i == 0:
s += i
if i != num // i:
s += num // i
i += 1
return s == num
class Solution {
public boolean checkPerfectNumber(int num) {
if (num == 1) {
return false;
}
int s = 1;
for (int i = 2; i <= num / i; ++i) {
if (num % i == 0) {
s += i;
if (i != num / i) {
s += num / i;
}
}
}
return s == num;
}
}
class Solution {
public:
bool checkPerfectNumber(int num) {
if (num == 1) {
return false;
}
int s = 1;
for (int i = 2; i <= num / i; ++i) {
if (num % i == 0) {
s += i;
if (i != num / i) {
s += num / i;
}
}
}
return s == num;
}
};
func checkPerfectNumber(num int) bool {
if num == 1 {
return false
}
s := 1
for i := 2; i <= num/i; i++ {
if num%i == 0 {
s += i
if j := num / i; i != j {
s += j
}
}
}
return s == num
}
function checkPerfectNumber(num: number): boolean {
if (num <= 1) {
return false;
}
let s = 1;
for (let i = 2; i <= num / i; ++i) {
if (num % i === 0) {
s += i;
if (i * i !== num) {
s += num / i;
}
}
}
return s === num;
}