Skip to content

Latest commit

 

History

History
506 lines (414 loc) · 9.58 KB

File metadata and controls

506 lines (414 loc) · 9.58 KB
comments difficulty edit_url tags
true
简单
递归
记忆化搜索
数学
动态规划

English Version

题目描述

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 01 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1

给定 n ,请计算 F(n)

 

示例 1:

输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:

输入:n = 3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2

示例 3:

输入:n = 4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3

 

提示:

  • 0 <= n <= 30

解法

方法一:递推

我们定义两个变量 $a$$b$,初始时 $a = 0$, $b = 1$

接下来,我们进行 $n$ 次循环,每次循环中,我们将 $a$$b$ 的值分别更新为 $b$$a + b$

最后,返回 $a$ 即可。

时间复杂度 $O(n)$,其中 $n$ 为题目给定的整数 $n$。空间复杂度 $O(1)$

Python3

class Solution:
    def fib(self, n: int) -> int:
        a, b = 0, 1
        for _ in range(n):
            a, b = b, a + b
        return a

Java

class Solution {
    public int fib(int n) {
        int a = 0, b = 1;
        while (n-- > 0) {
            int c = a + b;
            a = b;
            b = c;
        }
        return a;
    }
}

C++

class Solution {
public:
    int fib(int n) {
        int a = 0, b = 1;
        while (n--) {
            int c = a + b;
            a = b;
            b = c;
        }
        return a;
    }
};

Go

func fib(n int) int {
	a, b := 0, 1
	for i := 0; i < n; i++ {
		a, b = b, a+b
	}
	return a
}

TypeScript

function fib(n: number): number {
    let [a, b] = [0, 1];
    while (n--) {
        [a, b] = [b, a + b];
    }
    return a;
}

Rust

impl Solution {
    pub fn fib(n: i32) -> i32 {
        let mut a = 0;
        let mut b = 1;
        for _ in 0..n {
            let t = b;
            b = a + b;
            a = t;
        }
        a
    }
}

JavaScript

/**
 * @param {number} n
 * @return {number}
 */
var fib = function (n) {
    let [a, b] = [0, 1];
    while (n--) {
        [a, b] = [b, a + b];
    }
    return a;
};

PHP

class Solution {
    /**
     * @param Integer $n
     * @return Integer
     */
    function fib($n) {
        $a = 0;
        $b = 1;
        for ($i = 0; $i < $n; $i++) {
            $temp = $a;
            $a = $b;
            $b = $temp + $b;
        }
        return $a;
    }
}

方法二:矩阵快速幂加速递推

我们设 $\textit{Fib}(n)$ 表示一个 $1 \times 2$ 的矩阵 $\begin{bmatrix} F_n & F_{n - 1} \end{bmatrix}$,其中 $F_n$$F_{n - 1}$ 分别是第 $n$ 个和第 $n - 1$ 个斐波那契数。

我们希望根据 $\textit{Fib}(n - 1) = \begin{bmatrix} F_{n - 1} & F_{n - 2} \end{bmatrix}$ 推出 $\textit{Fib}(n)$。也即是说,我们需要一个矩阵 $\textit{base}$,使得 $\textit{Fib}(n - 1) \times \textit{base} = \textit{Fib}(n)$,即:

$$ \begin{bmatrix} F_{n - 1} & F_{n - 2} \end{bmatrix} \times \textit{base} = \begin{bmatrix} F_n & F_{n - 1} \end{bmatrix} $$

由于 $F_n = F_{n - 1} + F_{n - 2}$,所以矩阵 $\textit{base}$ 的第一列为:

$$ \begin{bmatrix} 1 \\ 1 \end{bmatrix} $$

第二列为:

$$ \begin{bmatrix} 1 \\ 0 \end{bmatrix} $$

因此有:

$$ \begin{bmatrix} F_{n - 1} & F_{n - 2} \end{bmatrix} \times \begin{bmatrix}1 & 1 \ 1 & 0\end{bmatrix} = \begin{bmatrix} F_n & F_{n - 1} \end{bmatrix} $$

我们定义初始矩阵 $res = \begin{bmatrix} 1 & 0 \end{bmatrix}$,那么 $F_n$ 等于 $res$ 乘以 $\textit{base}^{n}$ 的结果矩阵中第一行的第二个元素。使用矩阵快速幂求解即可。

时间复杂度 $O(\log n)$,空间复杂度 $O(1)$

Python3

import numpy as np


class Solution:
    def fib(self, n: int) -> int:
        factor = np.asmatrix([(1, 1), (1, 0)], np.dtype("O"))
        res = np.asmatrix([(1, 0)], np.dtype("O"))
        while n:
            if n & 1:
                res = res * factor
            factor = factor * factor
            n >>= 1
        return res[0, 1]

Java

class Solution {
    public int fib(int n) {
        int[][] a = {{1, 1}, {1, 0}};
        return pow(a, n)[0][1];
    }

    private int[][] mul(int[][] a, int[][] b) {
        int m = a.length, n = b[0].length;
        int[][] c = new int[m][n];
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                for (int k = 0; k < b.length; ++k) {
                    c[i][j] = c[i][j] + a[i][k] * b[k][j];
                }
            }
        }
        return c;
    }

    private int[][] pow(int[][] a, int n) {
        int[][] res = {{1, 0}};
        while (n > 0) {
            if ((n & 1) == 1) {
                res = mul(res, a);
            }
            a = mul(a, a);
            n >>= 1;
        }
        return res;
    }
}

C++

class Solution {
public:
    int fib(int n) {
        vector<vector<int>> a = {{1, 1}, {1, 0}};
        return qpow(a, n)[0][1];
    }

    vector<vector<int>> mul(vector<vector<int>>& a, vector<vector<int>>& b) {
        int m = a.size(), n = b[0].size();
        vector<vector<int>> c(m, vector<int>(n));
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                for (int k = 0; k < b.size(); ++k) {
                    c[i][j] = c[i][j] + a[i][k] * b[k][j];
                }
            }
        }
        return c;
    }

    vector<vector<int>> qpow(vector<vector<int>>& a, int n) {
        vector<vector<int>> res = {{1, 0}};
        while (n) {
            if (n & 1) {
                res = mul(res, a);
            }
            a = mul(a, a);
            n >>= 1;
        }
        return res;
    }
};

Go

func fib(n int) int {
	a := [][]int{{1, 1}, {1, 0}}
	return pow(a, n)[0][1]
}

func mul(a, b [][]int) [][]int {
	m, n := len(a), len(b[0])
	c := make([][]int, m)
	for i := range c {
		c[i] = make([]int, n)
	}
	for i := 0; i < m; i++ {
		for j := 0; j < n; j++ {
			for k := 0; k < len(b); k++ {
				c[i][j] = c[i][j] + a[i][k]*b[k][j]
			}
		}
	}
	return c
}

func pow(a [][]int, n int) [][]int {
	res := [][]int{{1, 0}}
	for n > 0 {
		if n&1 == 1 {
			res = mul(res, a)
		}
		a = mul(a, a)
		n >>= 1
	}
	return res
}

TypeScript

function fib(n: number): number {
    const a: number[][] = [
        [1, 1],
        [1, 0],
    ];
    return pow(a, n)[0][1];
}

function mul(a: number[][], b: number[][]): number[][] {
    const [m, n] = [a.length, b[0].length];
    const c = Array.from({ length: m }, () => Array.from({ length: n }, () => 0));
    for (let i = 0; i < m; ++i) {
        for (let j = 0; j < n; ++j) {
            for (let k = 0; k < b.length; ++k) {
                c[i][j] += a[i][k] * b[k][j];
            }
        }
    }
    return c;
}

function pow(a: number[][], n: number): number[][] {
    let res = [[1, 0]];
    while (n) {
        if (n & 1) {
            res = mul(res, a);
        }
        a = mul(a, a);
        n >>= 1;
    }
    return res;
}

Rust

impl Solution {
    pub fn fib(n: i32) -> i32 {
        let a = vec![vec![1, 1], vec![1, 0]];
        pow(a, n as usize)[0][1]
    }
}

fn mul(a: Vec<Vec<i32>>, b: Vec<Vec<i32>>) -> Vec<Vec<i32>> {
    let m = a.len();
    let n = b[0].len();
    let mut c = vec![vec![0; n]; m];

    for i in 0..m {
        for j in 0..n {
            for k in 0..b.len() {
                c[i][j] += a[i][k] * b[k][j];
            }
        }
    }
    c
}

fn pow(mut a: Vec<Vec<i32>>, mut n: usize) -> Vec<Vec<i32>> {
    let mut res = vec![vec![1, 0], vec![0, 1]];

    while n > 0 {
        if n & 1 == 1 {
            res = mul(res, a.clone());
        }
        a = mul(a.clone(), a);
        n >>= 1;
    }
    res
}

JavaScript

/**
 * @param {number} n
 * @return {number}
 */
var fib = function (n) {
    const a = [
        [1, 1],
        [1, 0],
    ];
    return pow(a, n)[0][1];
};

function mul(a, b) {
    const m = a.length,
        n = b[0].length;
    const c = Array.from({ length: m }, () => Array(n).fill(0));
    for (let i = 0; i < m; ++i) {
        for (let j = 0; j < n; ++j) {
            for (let k = 0; k < b.length; ++k) {
                c[i][j] += a[i][k] * b[k][j];
            }
        }
    }
    return c;
}

function pow(a, n) {
    let res = [
        [1, 0],
        [0, 1],
    ];
    while (n > 0) {
        if (n & 1) {
            res = mul(res, a);
        }
        a = mul(a, a);
        n >>= 1;
    }
    return res;
}