comments | difficulty | edit_url | tags | |||
---|---|---|---|---|---|---|
true |
简单 |
|
在 MATLAB 中,有一个非常有用的函数 reshape
,它可以将一个 m x n
矩阵重塑为另一个大小不同(r x c
)的新矩阵,但保留其原始数据。
给你一个由二维数组 mat
表示的 m x n
矩阵,以及两个正整数 r
和 c
,分别表示想要的重构的矩阵的行数和列数。
重构后的矩阵需要将原始矩阵的所有元素以相同的 行遍历顺序 填充。
如果具有给定参数的 reshape
操作是可行且合理的,则输出新的重塑矩阵;否则,输出原始矩阵。
示例 1:
输入:mat = [[1,2],[3,4]], r = 1, c = 4 输出:[[1,2,3,4]]
示例 2:
输入:mat = [[1,2],[3,4]], r = 2, c = 4 输出:[[1,2],[3,4]]
提示:
m == mat.length
n == mat[i].length
1 <= m, n <= 100
-1000 <= mat[i][j] <= 1000
1 <= r, c <= 300
我们先获取原矩阵的行数和列数,分别记为
否则,我们创建一个新矩阵,新矩阵的行数为
遍历完原矩阵的所有元素后,我们即可得到答案。
时间复杂度
class Solution:
def matrixReshape(self, mat: List[List[int]], r: int, c: int) -> List[List[int]]:
m, n = len(mat), len(mat[0])
if m * n != r * c:
return mat
ans = [[0] * c for _ in range(r)]
for i in range(m * n):
ans[i // c][i % c] = mat[i // n][i % n]
return ans
class Solution {
public int[][] matrixReshape(int[][] mat, int r, int c) {
int m = mat.length, n = mat[0].length;
if (m * n != r * c) {
return mat;
}
int[][] ans = new int[r][c];
for (int i = 0; i < m * n; ++i) {
ans[i / c][i % c] = mat[i / n][i % n];
}
return ans;
}
}
class Solution {
public:
vector<vector<int>> matrixReshape(vector<vector<int>>& mat, int r, int c) {
int m = mat.size(), n = mat[0].size();
if (m * n != r * c) {
return mat;
}
vector<vector<int>> ans(r, vector<int>(c));
for (int i = 0; i < m * n; ++i) {
ans[i / c][i % c] = mat[i / n][i % n];
}
return ans;
}
};
func matrixReshape(mat [][]int, r int, c int) [][]int {
m, n := len(mat), len(mat[0])
if m*n != r*c {
return mat
}
ans := make([][]int, r)
for i := range ans {
ans[i] = make([]int, c)
}
for i := 0; i < m*n; i++ {
ans[i/c][i%c] = mat[i/n][i%n]
}
return ans
}
function matrixReshape(mat: number[][], r: number, c: number): number[][] {
let m = mat.length,
n = mat[0].length;
if (m * n != r * c) return mat;
let ans = Array.from({ length: r }, v => new Array(c).fill(0));
let k = 0;
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
ans[Math.floor(k / c)][k % c] = mat[i][j];
++k;
}
}
return ans;
}
impl Solution {
pub fn matrix_reshape(mat: Vec<Vec<i32>>, r: i32, c: i32) -> Vec<Vec<i32>> {
let r = r as usize;
let c = c as usize;
let m = mat.len();
let n = mat[0].len();
if m * n != r * c {
return mat;
}
let mut i = 0;
let mut j = 0;
(0..r)
.into_iter()
.map(|_| {
(0..c)
.into_iter()
.map(|_| {
let res = mat[i][j];
j += 1;
if j == n {
j = 0;
i += 1;
}
res
})
.collect()
})
.collect()
}
}
/**
* Return an array of arrays of size *returnSize.
* The sizes of the arrays are returned as *returnColumnSizes array.
* Note: Both returned array and *columnSizes array must be malloced, assume caller calls free().
*/
int** matrixReshape(int** mat, int matSize, int* matColSize, int r, int c, int* returnSize, int** returnColumnSizes) {
if (matSize * matColSize[0] != r * c) {
*returnSize = matSize;
*returnColumnSizes = matColSize;
return mat;
}
*returnSize = r;
*returnColumnSizes = malloc(sizeof(int) * r);
int** ans = malloc(sizeof(int*) * r);
for (int i = 0; i < r; i++) {
(*returnColumnSizes)[i] = c;
ans[i] = malloc(sizeof(int) * c);
}
for (int i = 0; i < r * c; i++) {
ans[i / c][i % c] = mat[i / matColSize[0]][i % matColSize[0]];
}
return ans;
}
function matrixReshape(mat: number[][], r: number, c: number): number[][] {
const m = mat.length;
const n = mat[0].length;
if (m * n !== r * c) {
return mat;
}
const ans = Array.from({ length: r }, () => new Array(c).fill(0));
for (let i = 0; i < r * c; i++) {
ans[Math.floor(i / c)][i % c] = mat[Math.floor(i / n)][i % n];
}
return ans;
}