Skip to content

Latest commit

 

History

History
316 lines (257 loc) · 8.62 KB

File metadata and controls

316 lines (257 loc) · 8.62 KB
comments difficulty edit_url tags
true
中等
贪心
数组
双指针
二分查找
排序

English Version

题目描述

你有 n 个工作和 m 个工人。给定三个数组: difficultyprofit 和 worker ,其中:

  • difficulty[i] 表示第 i 个工作的难度,profit[i] 表示第 i 个工作的收益。
  • worker[i] 是第 i 个工人的能力,即该工人只能完成难度小于等于 worker[i] 的工作。

每个工人 最多 只能安排 一个 工作,但是一个工作可以 完成多次

  • 举个例子,如果 3 个工人都尝试完成一份报酬为 $1 的同样工作,那么总收益为 $3 。如果一个工人不能完成任何工作,他的收益为 $0

返回 在把工人分配到工作岗位后,我们所能获得的最大利润 

 

示例 1:

输入: difficulty = [2,4,6,8,10], profit = [10,20,30,40,50], worker = [4,5,6,7]
输出: 100 
解释: 工人被分配的工作难度是 [4,4,6,6] ,分别获得 [20,20,30,30] 的收益。

示例 2:

输入: difficulty = [85,47,57], profit = [24,66,99], worker = [40,25,25]
输出: 0

 

提示:

  • n == difficulty.length
  • n == profit.length
  • m == worker.length
  • 1 <= n, m <= 104
  • 1 <= difficulty[i], profit[i], worker[i] <= 105

解法

方法一:排序 + 双指针

我们可以将工作按照能力升序排列,然后将工作按照难度升序排列。

然后我们遍历工人,对于每个工人,我们找出他能完成的工作中收益最大的那个,然后将这个收益加到答案中。

时间复杂度 $O(n \times \log n + m \times \log m)$,空间复杂度 $O(n)$。其中 $n$$m$ 分别是数组 profitworker 的长度。

Python3

class Solution:
    def maxProfitAssignment(
        self, difficulty: List[int], profit: List[int], worker: List[int]
    ) -> int:
        worker.sort()
        jobs = sorted(zip(difficulty, profit))
        ans = mx = i = 0
        for w in worker:
            while i < len(jobs) and jobs[i][0] <= w:
                mx = max(mx, jobs[i][1])
                i += 1
            ans += mx
        return ans

Java

class Solution {
    public int maxProfitAssignment(int[] difficulty, int[] profit, int[] worker) {
        Arrays.sort(worker);
        int n = profit.length;
        int[][] jobs = new int[n][0];
        for (int i = 0; i < n; ++i) {
            jobs[i] = new int[] {difficulty[i], profit[i]};
        }
        Arrays.sort(jobs, (a, b) -> a[0] - b[0]);
        int ans = 0, mx = 0, i = 0;
        for (int w : worker) {
            while (i < n && jobs[i][0] <= w) {
                mx = Math.max(mx, jobs[i++][1]);
            }
            ans += mx;
        }
        return ans;
    }
}

C++

class Solution {
public:
    int maxProfitAssignment(vector<int>& difficulty, vector<int>& profit, vector<int>& worker) {
        sort(worker.begin(), worker.end());
        int n = profit.size();
        vector<pair<int, int>> jobs;
        for (int i = 0; i < n; ++i) {
            jobs.emplace_back(difficulty[i], profit[i]);
        }
        sort(jobs.begin(), jobs.end());
        int ans = 0, mx = 0, i = 0;
        for (int w : worker) {
            while (i < n && jobs[i].first <= w) {
                mx = max(mx, jobs[i++].second);
            }
            ans += mx;
        }
        return ans;
    }
};

Go

func maxProfitAssignment(difficulty []int, profit []int, worker []int) (ans int) {
	sort.Ints(worker)
	n := len(profit)
	jobs := make([][2]int, n)
	for i, p := range profit {
		jobs[i] = [2]int{difficulty[i], p}
	}
	sort.Slice(jobs, func(i, j int) bool { return jobs[i][0] < jobs[j][0] })
	mx, i := 0, 0
	for _, w := range worker {
		for ; i < n && jobs[i][0] <= w; i++ {
			mx = max(mx, jobs[i][1])
		}
		ans += mx
	}
	return
}

TypeScript

function maxProfitAssignment(difficulty: number[], profit: number[], worker: number[]): number {
    const n = profit.length;
    worker.sort((a, b) => a - b);
    const jobs = Array.from({ length: n }, (_, i) => [difficulty[i], profit[i]]);
    jobs.sort((a, b) => a[0] - b[0]);
    let [ans, mx, i] = [0, 0, 0];
    for (const w of worker) {
        while (i < n && jobs[i][0] <= w) {
            mx = Math.max(mx, jobs[i++][1]);
        }
        ans += mx;
    }
    return ans;
}

方法二:动态规划

我们不妨记 $m = \max(\textit{difficulty})$,定义一个长度为 $m + 1$ 的数组 $f$,其中 $f[i]$ 表示难度小于等于 $i$ 的工作中收益的最大值,初始时 $f[i] = 0$

然后我们遍历工作,对于每个工作 $(d, p)$,我们更新 $f[d] = \max(f[d], p)$

接下来,我们从 $1$$m$ 遍历,对于每个 $i$,我们更新 $f[i] = \max(f[i], f[i - 1])$

最后,我们遍历工人,对于每个工人 $w$,我们将 $f[\min(w, m)]$ 加到答案中。

时间复杂度 $O(n + M)$,空间复杂度 $O(M)$。其中 $n$ 是数组 profit 的长度,而 $M$ 是数组 difficulty 中的最大值。

Python3

class Solution:
    def maxProfitAssignment(
        self, difficulty: List[int], profit: List[int], worker: List[int]
    ) -> int:
        m = max(difficulty)
        f = [0] * (m + 1)
        for d, p in zip(difficulty, profit):
            f[d] = max(f[d], p)
        for i in range(1, m + 1):
            f[i] = max(f[i], f[i - 1])
        return sum(f[min(w, m)] for w in worker)

Java

class Solution {
    public int maxProfitAssignment(int[] difficulty, int[] profit, int[] worker) {
        int m = Arrays.stream(difficulty).max().getAsInt();
        int[] f = new int[m + 1];
        int n = profit.length;
        for (int i = 0; i < n; ++i) {
            int d = difficulty[i];
            f[d] = Math.max(f[d], profit[i]);
        }
        for (int i = 1; i <= m; ++i) {
            f[i] = Math.max(f[i], f[i - 1]);
        }
        int ans = 0;
        for (int w : worker) {
            ans += f[Math.min(w, m)];
        }
        return ans;
    }
}

C++

class Solution {
public:
    int maxProfitAssignment(vector<int>& difficulty, vector<int>& profit, vector<int>& worker) {
        int m = *max_element(begin(difficulty), end(difficulty));
        int f[m + 1];
        memset(f, 0, sizeof(f));
        int n = profit.size();
        for (int i = 0; i < n; ++i) {
            int d = difficulty[i];
            f[d] = max(f[d], profit[i]);
        }
        for (int i = 1; i <= m; ++i) {
            f[i] = max(f[i], f[i - 1]);
        }
        int ans = 0;
        for (int w : worker) {
            ans += f[min(w, m)];
        }
        return ans;
    }
};

Go

func maxProfitAssignment(difficulty []int, profit []int, worker []int) (ans int) {
	m := slices.Max(difficulty)
	f := make([]int, m+1)
	for i, d := range difficulty {
		f[d] = max(f[d], profit[i])
	}
	for i := 1; i <= m; i++ {
		f[i] = max(f[i], f[i-1])
	}
	for _, w := range worker {
		ans += f[min(w, m)]
	}
	return
}

TypeScript

function maxProfitAssignment(difficulty: number[], profit: number[], worker: number[]): number {
    const m = Math.max(...difficulty);
    const f = Array(m + 1).fill(0);
    const n = profit.length;
    for (let i = 0; i < n; ++i) {
        const d = difficulty[i];
        f[d] = Math.max(f[d], profit[i]);
    }
    for (let i = 1; i <= m; ++i) {
        f[i] = Math.max(f[i], f[i - 1]);
    }
    return worker.reduce((acc, w) => acc + f[Math.min(w, m)], 0);
}