comments | difficulty | edit_url | tags | ||
---|---|---|---|---|---|
true |
困难 |
|
给定一个正整数 n
,返回 连续正整数满足所有数字之和为 n
的组数 。
示例 1:
输入: n = 5 输出: 2 解释: 5 = 2 + 3,共有两组连续整数([5],[2,3])求和后为 5。
示例 2:
输入: n = 9 输出: 3 解释: 9 = 4 + 5 = 2 + 3 + 4
示例 3:
输入: n = 15 输出: 4 解释: 15 = 8 + 7 = 4 + 5 + 6 = 1 + 2 + 3 + 4 + 5
提示:
1 <= n <= 109
连续正整数构成一个公差
由于
综上,我们可以得出:
-
$k$ 一定能整除$n \times 2$ ; -
$k \times (k + 1) \leq n \times 2$ ; -
$(n \times 2) / k - k + 1$ 一定是偶数。
我们从
枚举结束后,返回答案即可。
时间复杂度
class Solution:
def consecutiveNumbersSum(self, n: int) -> int:
n <<= 1
ans, k = 0, 1
while k * (k + 1) <= n:
if n % k == 0 and (n // k + 1 - k) % 2 == 0:
ans += 1
k += 1
return ans
class Solution {
public int consecutiveNumbersSum(int n) {
n <<= 1;
int ans = 0;
for (int k = 1; k * (k + 1) <= n; ++k) {
if (n % k == 0 && (n / k + 1 - k) % 2 == 0) {
++ans;
}
}
return ans;
}
}
class Solution {
public:
int consecutiveNumbersSum(int n) {
n <<= 1;
int ans = 0;
for (int k = 1; k * (k + 1) <= n; ++k) {
if (n % k == 0 && (n / k + 1 - k) % 2 == 0) {
++ans;
}
}
return ans;
}
};
func consecutiveNumbersSum(n int) int {
n <<= 1
ans := 0
for k := 1; k*(k+1) <= n; k++ {
if n%k == 0 && (n/k+1-k)%2 == 0 {
ans++
}
}
return ans
}
function consecutiveNumbersSum(n: number): number {
let ans = 0;
n <<= 1;
for (let k = 1; k * (k + 1) <= n; ++k) {
if (n % k === 0 && (Math.floor(n / k) + 1 - k) % 2 === 0) {
++ans;
}
}
return ans;
}