comments | difficulty | edit_url | tags | ||||
---|---|---|---|---|---|---|---|
true |
简单 |
|
如果二叉树每个节点都具有相同的值,那么该二叉树就是单值二叉树。
只有给定的树是单值二叉树时,才返回 true
;否则返回 false
。
示例 1:
输入:[1,1,1,1,1,null,1] 输出:true
示例 2:
输入:[2,2,2,5,2] 输出:false
提示:
- 给定树的节点数范围是
[1, 100]
。 - 每个节点的值都是整数,范围为
[0, 99]
。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isUnivalTree(self, root: TreeNode) -> bool:
def dfs(node):
if node is None:
return True
return node.val == root.val and dfs(node.left) and dfs(node.right)
return dfs(root)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isUnivalTree(TreeNode root) {
return dfs(root, root.val);
}
private boolean dfs(TreeNode root, int val) {
if (root == null) {
return true;
}
return root.val == val && dfs(root.left, val) && dfs(root.right, val);
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool isUnivalTree(TreeNode* root) {
return dfs(root, root->val);
}
bool dfs(TreeNode* root, int val) {
if (!root) return true;
return root->val == val && dfs(root->left, val) && dfs(root->right, val);
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func isUnivalTree(root *TreeNode) bool {
var dfs func(*TreeNode) bool
dfs = func(node *TreeNode) bool {
if node == nil {
return true
}
return node.Val == root.Val && dfs(node.Left) && dfs(node.Right)
}
return dfs(root)
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function isUnivalTree(root: TreeNode | null): boolean {
const val = root.val;
const dfs = (root: TreeNode | null) => {
if (root == null) {
return true;
}
return root.val === val && dfs(root.left) && dfs(root.right);
};
return dfs(root.left) && dfs(root.right);
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
fn dfs(val: i32, root: &Option<Rc<RefCell<TreeNode>>>) -> bool {
if root.is_none() {
return true;
}
let root = root.as_ref().unwrap().borrow();
root.val == val && Self::dfs(val, &root.left) && Self::dfs(val, &root.right)
}
pub fn is_unival_tree(root: Option<Rc<RefCell<TreeNode>>>) -> bool {
let root = root.as_ref().unwrap().borrow();
Self::dfs(root.val, &root.left) && Self::dfs(root.val, &root.right)
}
}