comments | difficulty | edit_url | rating | source | tags | ||||
---|---|---|---|---|---|---|---|---|---|
true |
中等 |
1758 |
第 132 场周赛 Q3 |
|
给你一个整数数组 nums
,返回 nums
中最长等差子序列的长度。
回想一下,nums
的子序列是一个列表 nums[i1], nums[i2], ..., nums[ik]
,且 0 <= i1 < i2 < ... < ik <= nums.length - 1
。并且如果 seq[i+1] - seq[i]
( 0 <= i < seq.length - 1
) 的值都相同,那么序列 seq
是等差的。
示例 1:
输入:nums = [3,6,9,12] 输出:4 解释: 整个数组是公差为 3 的等差数列。
示例 2:
输入:nums = [9,4,7,2,10] 输出:3 解释: 最长的等差子序列是 [4,7,10]。
示例 3:
输入:nums = [20,1,15,3,10,5,8] 输出:4 解释: 最长的等差子序列是 [20,15,10,5]。
提示:
2 <= nums.length <= 1000
0 <= nums[i] <= 500
我们定义
由于公差可能为负数,且最大差值为
$500$ ,因此,我们可以将统一将公差加上$500$ ,这样公差的范围就变成了$[0, 1000]$ 。
考虑
最后返回答案即可。
如果初始时
$f[i][j]=0$ ,那么我们需要在最后返回答案时加上$1$ 。
时间复杂度
class Solution:
def longestArithSeqLength(self, nums: List[int]) -> int:
n = len(nums)
f = [[1] * 1001 for _ in range(n)]
ans = 0
for i in range(1, n):
for k in range(i):
j = nums[i] - nums[k] + 500
f[i][j] = max(f[i][j], f[k][j] + 1)
ans = max(ans, f[i][j])
return ans
class Solution {
public int longestArithSeqLength(int[] nums) {
int n = nums.length;
int ans = 0;
int[][] f = new int[n][1001];
for (int i = 1; i < n; ++i) {
for (int k = 0; k < i; ++k) {
int j = nums[i] - nums[k] + 500;
f[i][j] = Math.max(f[i][j], f[k][j] + 1);
ans = Math.max(ans, f[i][j]);
}
}
return ans + 1;
}
}
class Solution {
public:
int longestArithSeqLength(vector<int>& nums) {
int n = nums.size();
int f[n][1001];
memset(f, 0, sizeof(f));
int ans = 0;
for (int i = 1; i < n; ++i) {
for (int k = 0; k < i; ++k) {
int j = nums[i] - nums[k] + 500;
f[i][j] = max(f[i][j], f[k][j] + 1);
ans = max(ans, f[i][j]);
}
}
return ans + 1;
}
};
func longestArithSeqLength(nums []int) int {
n := len(nums)
f := make([][]int, n)
for i := range f {
f[i] = make([]int, 1001)
}
ans := 0
for i := 1; i < n; i++ {
for k := 0; k < i; k++ {
j := nums[i] - nums[k] + 500
f[i][j] = max(f[i][j], f[k][j]+1)
ans = max(ans, f[i][j])
}
}
return ans + 1
}
function longestArithSeqLength(nums: number[]): number {
const n = nums.length;
let ans = 0;
const f: number[][] = Array.from({ length: n }, () => new Array(1001).fill(0));
for (let i = 1; i < n; ++i) {
for (let k = 0; k < i; ++k) {
const j = nums[i] - nums[k] + 500;
f[i][j] = Math.max(f[i][j], f[k][j] + 1);
ans = Math.max(ans, f[i][j]);
}
}
return ans + 1;
}