Skip to content

Latest commit

 

History

History
370 lines (317 loc) · 10.3 KB

File metadata and controls

370 lines (317 loc) · 10.3 KB
comments difficulty edit_url rating source tags
true
中等
1649
第 178 场周赛 Q3
深度优先搜索
链表
二叉树

English Version

题目描述

给你一棵以 root 为根的二叉树和一个 head 为第一个节点的链表。

如果在二叉树中,存在一条一直向下的路径,且每个点的数值恰好一一对应以 head 为首的链表中每个节点的值,那么请你返回 True ,否则返回 False

一直向下的路径的意思是:从树中某个节点开始,一直连续向下的路径。

 

示例 1:

输入:head = [4,2,8], root = [1,4,4,null,2,2,null,1,null,6,8,null,null,null,null,1,3]
输出:true
解释:树中蓝色的节点构成了与链表对应的子路径。

示例 2:

输入:head = [1,4,2,6], root = [1,4,4,null,2,2,null,1,null,6,8,null,null,null,null,1,3]
输出:true

示例 3:

输入:head = [1,4,2,6,8], root = [1,4,4,null,2,2,null,1,null,6,8,null,null,null,null,1,3]
输出:false
解释:二叉树中不存在一一对应链表的路径。

 

提示:

  • 二叉树和链表中的每个节点的值都满足 1 <= node.val <= 100 。
  • 链表包含的节点数目在 1 到 100 之间。
  • 二叉树包含的节点数目在 1 到 2500 之间。

解法

方法一:递归

我们设计一个递归函数 $dfs(head, root)$,表示链表 $head$ 是否是以 $root$ 为起点的路径上的节点值一一对应的子路径。函数 $dfs(head, root)$ 的逻辑如下:

  • 如果链表 $head$ 为空,说明链表已经遍历完了,返回 true
  • 如果二叉树 $root$ 为空,说明二叉树已经遍历完了,但链表还没遍历完,返回 false
  • 如果二叉树 $root$ 的值与链表 $head$ 的值不相等,返回 false
  • 否则,返回 $dfs(head.next, root.left)$$dfs(head.next, root.right)$

我们在主函数中,对二叉树的每个节点调用 $dfs(head, root)$,只要有一个返回 true,就说明链表是二叉树的子路径,返回 true;如果所有节点都返回 false,说明链表不是二叉树的子路径,返回 false

时间复杂度 $O(n^2),空间复杂度 O(n)$。其中 $n$ 是二叉树的节点数。

Python3

# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, val=0, next=None):
#         self.val = val
#         self.next = next
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def isSubPath(self, head: Optional[ListNode], root: Optional[TreeNode]) -> bool:
        def dfs(head, root):
            if head is None:
                return True
            if root is None or root.val != head.val:
                return False
            return dfs(head.next, root.left) or dfs(head.next, root.right)

        if root is None:
            return False
        return (
            dfs(head, root)
            or self.isSubPath(head, root.left)
            or self.isSubPath(head, root.right)
        )

Java

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode() {}
 *     ListNode(int val) { this.val = val; }
 *     ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public boolean isSubPath(ListNode head, TreeNode root) {
        if (root == null) {
            return false;
        }
        return dfs(head, root) || isSubPath(head, root.left) || isSubPath(head, root.right);
    }

    private boolean dfs(ListNode head, TreeNode root) {
        if (head == null) {
            return true;
        }
        if (root == null || head.val != root.val) {
            return false;
        }
        return dfs(head.next, root.left) || dfs(head.next, root.right);
    }
}

C++

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    bool isSubPath(ListNode* head, TreeNode* root) {
        if (!root) {
            return false;
        }
        return dfs(head, root) || isSubPath(head, root->left) || isSubPath(head, root->right);
    }

    bool dfs(ListNode* head, TreeNode* root) {
        if (!head) {
            return true;
        }
        if (!root || head->val != root->val) {
            return false;
        }
        return dfs(head->next, root->left) || dfs(head->next, root->right);
    }
};

Go

/**
 * Definition for singly-linked list.
 * type ListNode struct {
 *     Val int
 *     Next *ListNode
 * }
 */
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func isSubPath(head *ListNode, root *TreeNode) bool {
	if root == nil {
		return false
	}
	return dfs(head, root) || isSubPath(head, root.Left) || isSubPath(head, root.Right)
}

func dfs(head *ListNode, root *TreeNode) bool {
	if head == nil {
		return true
	}
	if root == nil || head.Val != root.Val {
		return false
	}
	return dfs(head.Next, root.Left) || dfs(head.Next, root.Right)
}

TypeScript

/**
 * Definition for singly-linked list.
 * class ListNode {
 *     val: number
 *     next: ListNode | null
 *     constructor(val?: number, next?: ListNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.next = (next===undefined ? null : next)
 *     }
 * }
 */

/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

const dfs = (head: ListNode | null, root: TreeNode | null) => {
    if (head == null) {
        return true;
    }
    if (root == null || head.val !== root.val) {
        return false;
    }
    return dfs(head.next, root.left) || dfs(head.next, root.right);
};

function isSubPath(head: ListNode | null, root: TreeNode | null): boolean {
    if (root == null) {
        return false;
    }
    return dfs(head, root) || isSubPath(head, root.left) || isSubPath(head, root.right);
}

Rust

// Definition for singly-linked list.
// #[derive(PartialEq, Eq, Clone, Debug)]
// pub struct ListNode {
//   pub val: i32,
//   pub next: Option<Box<ListNode>>
// }
//
// impl ListNode {
//   #[inline]
//   fn new(val: i32) -> Self {
//     ListNode {
//       next: None,
//       val
//     }
//   }
// }
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//     TreeNode {
//       val,
//       left: None,
//       right: None
//     }
//   }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
    fn dfs(head: &Option<Box<ListNode>>, root: &Option<Rc<RefCell<TreeNode>>>) -> bool {
        if head.is_none() {
            return true;
        }
        if root.is_none() {
            return false;
        }
        let node = head.as_ref().unwrap();
        let root = root.as_ref().unwrap().borrow();
        if node.val != root.val {
            return false;
        }
        Self::dfs(&node.next, &root.left) || Self::dfs(&node.next, &root.right)
    }

    fn my_is_sub_path(head: &Option<Box<ListNode>>, root: &Option<Rc<RefCell<TreeNode>>>) -> bool {
        if root.is_none() {
            return false;
        }
        let node = root.as_ref().unwrap().borrow();
        Self::dfs(head, root)
            || Self::my_is_sub_path(head, &node.left)
            || Self::my_is_sub_path(head, &node.right)
    }

    pub fn is_sub_path(head: Option<Box<ListNode>>, root: Option<Rc<RefCell<TreeNode>>>) -> bool {
        Self::my_is_sub_path(&head, &root)
    }
}