comments | difficulty | edit_url | rating | source | tags | |||
---|---|---|---|---|---|---|---|---|
true |
中等 |
1334 |
第 184 场周赛 Q2 |
|
给定一个正整数数组 queries
,其取值范围在 1
到 m
之间。 请你根据以下规则按顺序处理所有 queries[i]
(从 i=0
到 i=queries.length-1
):
- 首先,你有一个排列
P=[1,2,3,...,m]
。 - 对于当前的
i
,找到queries[i]
在排列P
中的位置(从 0 开始索引),然后将它移到排列P
的开头(即下标为 0 处)。注意,queries[i]
的查询结果是queries[i]
在P
中移动前的位置。
返回一个数组,包含从给定 queries
中查询到的结果。
示例 1:
输入:queries = [3,1,2,1], m = 5 输出:[2,1,2,1] 解释:处理 queries 的过程如下: 对于 i=0: queries[i]=3, P=[1,2,3,4,5], 3 在 P 中的位置是 2,然后我们把 3 移动到 P 的开头,得到 P=[3,1,2,4,5] 。 对于 i=1: queries[i]=1, P=[3,1,2,4,5], 1 在 P 中的位置是 1,然后我们把 1 移动到 P 的开头,得到 P=[1,3,2,4,5] 。 对于 i=2: queries[i]=2, P=[1,3,2,4,5], 2 在 P 中的位置是 2,然后我们把 2 移动到 P 的开头,得到 P=[2,1,3,4,5] 。 对于 i=3: queries[i]=1, P=[2,1,3,4,5], 1 在 P 中的位置是 1,然后我们把 1 移动到 P 的开头,得到 P=[1,2,3,4,5] 。 因此,包含结果的数组为 [2,1,2,1] 。
示例 2:
输入:queries = [4,1,2,2], m = 4 输出:[3,1,2,0]
示例 3:
输入:queries = [7,5,5,8,3], m = 8 输出:[6,5,0,7,5]
提示:
1 <= m <= 10^3
1 <= queries.length <= m
1 <= queries[i] <= m
题目数据规模不大,可以直接模拟。
class Solution:
def processQueries(self, queries: List[int], m: int) -> List[int]:
p = list(range(1, m + 1))
ans = []
for v in queries:
j = p.index(v)
ans.append(j)
p.pop(j)
p.insert(0, v)
return ans
class Solution {
public int[] processQueries(int[] queries, int m) {
List<Integer> p = new LinkedList<>();
for (int i = 1; i <= m; ++i) {
p.add(i);
}
int[] ans = new int[queries.length];
int i = 0;
for (int v : queries) {
int j = p.indexOf(v);
ans[i++] = j;
p.remove(j);
p.add(0, v);
}
return ans;
}
}
class Solution {
public:
vector<int> processQueries(vector<int>& queries, int m) {
vector<int> p(m);
iota(p.begin(), p.end(), 1);
vector<int> ans;
for (int v : queries) {
int j = 0;
for (int i = 0; i < m; ++i) {
if (p[i] == v) {
j = i;
break;
}
}
ans.push_back(j);
p.erase(p.begin() + j);
p.insert(p.begin(), v);
}
return ans;
}
};
func processQueries(queries []int, m int) []int {
p := make([]int, m)
for i := range p {
p[i] = i + 1
}
ans := []int{}
for _, v := range queries {
j := 0
for i := range p {
if p[i] == v {
j = i
break
}
}
ans = append(ans, j)
p = append(p[:j], p[j+1:]...)
p = append([]int{v}, p...)
}
return ans
}
树状数组,也称作“二叉索引树”(Binary Indexed Tree)或 Fenwick 树。 它可以高效地实现如下两个操作:
- 单点更新
update(x, delta)
: 把序列 x 位置的数加上一个值 delta; - 前缀和查询
query(x)
:查询序列[1,...x]
区间的区间和,即位置 x 的前缀和。
这两个操作的时间复杂度均为
树状数组最基本的功能就是求比某点 x 小的点的个数(这里的比较是抽象的概念,可以是数的大小、坐标的大小、质量的大小等等)。
比如给定数组 a[5] = {2, 5, 3, 4, 1}
,求 b[i] = 位置 i 左边小于等于 a[i] 的数的个数
。对于此例,b[5] = {0, 1, 1, 2, 0}
。
解决方案是直接遍历数组,每个位置先求出 query(a[i])
,然后再修改树状数组 update(a[i], 1)
即可。当数的范围比较大时,需要进行离散化,即先进行去重并排序,然后对每个数字进行编号。
class BinaryIndexedTree:
def __init__(self, n):
self.n = n
self.c = [0] * (n + 1)
@staticmethod
def lowbit(x):
return x & -x
def update(self, x, delta):
while x <= self.n:
self.c[x] += delta
x += BinaryIndexedTree.lowbit(x)
def query(self, x):
s = 0
while x > 0:
s += self.c[x]
x -= BinaryIndexedTree.lowbit(x)
return s
class Solution:
def processQueries(self, queries: List[int], m: int) -> List[int]:
n = len(queries)
pos = [0] * (m + 1)
tree = BinaryIndexedTree(m + n)
for i in range(1, m + 1):
pos[i] = n + i
tree.update(n + i, 1)
ans = []
for i, v in enumerate(queries):
j = pos[v]
tree.update(j, -1)
ans.append(tree.query(j))
pos[v] = n - i
tree.update(n - i, 1)
return ans
class BinaryIndexedTree {
private int n;
private int[] c;
public BinaryIndexedTree(int n) {
this.n = n;
c = new int[n + 1];
}
public void update(int x, int delta) {
while (x <= n) {
c[x] += delta;
x += lowbit(x);
}
}
public int query(int x) {
int s = 0;
while (x > 0) {
s += c[x];
x -= lowbit(x);
}
return s;
}
public static int lowbit(int x) {
return x & -x;
}
}
class Solution {
public int[] processQueries(int[] queries, int m) {
int n = queries.length;
BinaryIndexedTree tree = new BinaryIndexedTree(m + n);
int[] pos = new int[m + 1];
for (int i = 1; i <= m; ++i) {
pos[i] = n + i;
tree.update(n + i, 1);
}
int[] ans = new int[n];
int k = 0;
for (int i = 0; i < n; ++i) {
int v = queries[i];
int j = pos[v];
tree.update(j, -1);
ans[k++] = tree.query(j);
pos[v] = n - i;
tree.update(n - i, 1);
}
return ans;
}
}
class BinaryIndexedTree {
public:
int n;
vector<int> c;
BinaryIndexedTree(int _n)
: n(_n)
, c(_n + 1) {}
void update(int x, int delta) {
while (x <= n) {
c[x] += delta;
x += lowbit(x);
}
}
int query(int x) {
int s = 0;
while (x > 0) {
s += c[x];
x -= lowbit(x);
}
return s;
}
int lowbit(int x) {
return x & -x;
}
};
class Solution {
public:
vector<int> processQueries(vector<int>& queries, int m) {
int n = queries.size();
vector<int> pos(m + 1);
BinaryIndexedTree* tree = new BinaryIndexedTree(m + n);
for (int i = 1; i <= m; ++i) {
pos[i] = n + i;
tree->update(n + i, 1);
}
vector<int> ans;
for (int i = 0; i < n; ++i) {
int v = queries[i];
int j = pos[v];
tree->update(j, -1);
ans.push_back(tree->query(j));
pos[v] = n - i;
tree->update(n - i, 1);
}
return ans;
}
};
type BinaryIndexedTree struct {
n int
c []int
}
func newBinaryIndexedTree(n int) *BinaryIndexedTree {
c := make([]int, n+1)
return &BinaryIndexedTree{n, c}
}
func (this *BinaryIndexedTree) lowbit(x int) int {
return x & -x
}
func (this *BinaryIndexedTree) update(x, delta int) {
for x <= this.n {
this.c[x] += delta
x += this.lowbit(x)
}
}
func (this *BinaryIndexedTree) query(x int) int {
s := 0
for x > 0 {
s += this.c[x]
x -= this.lowbit(x)
}
return s
}
func processQueries(queries []int, m int) []int {
n := len(queries)
pos := make([]int, m+1)
tree := newBinaryIndexedTree(m + n)
for i := 1; i <= m; i++ {
pos[i] = n + i
tree.update(n+i, 1)
}
ans := []int{}
for i, v := range queries {
j := pos[v]
tree.update(j, -1)
ans = append(ans, tree.query(j))
pos[v] = n - i
tree.update(n-i, 1)
}
return ans
}