comments | difficulty | edit_url | rating | source | tags | |||
---|---|---|---|---|---|---|---|---|
true |
Medium |
1528 |
Weekly Contest 220 Q2 |
|
You are given an array of positive integers nums
and want to erase a subarray containing unique elements. The score you get by erasing the subarray is equal to the sum of its elements.
Return the maximum score you can get by erasing exactly one subarray.
An array b
is called to be a subarray of a
if it forms a contiguous subsequence of a
, that is, if it is equal to a[l],a[l+1],...,a[r]
for some (l,r)
.
Example 1:
Input: nums = [4,2,4,5,6] Output: 17 Explanation: The optimal subarray here is [2,4,5,6].
Example 2:
Input: nums = [5,2,1,2,5,2,1,2,5] Output: 8 Explanation: The optimal subarray here is [5,2,1] or [1,2,5].
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 104
We use an array or hash table
We traverse the array, for each number
The time complexity is
class Solution:
def maximumUniqueSubarray(self, nums: List[int]) -> int:
d = defaultdict(int)
s = list(accumulate(nums, initial=0))
ans = j = 0
for i, v in enumerate(nums, 1):
j = max(j, d[v])
ans = max(ans, s[i] - s[j])
d[v] = i
return ans
class Solution {
public int maximumUniqueSubarray(int[] nums) {
int[] d = new int[10001];
int n = nums.length;
int[] s = new int[n + 1];
for (int i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
int ans = 0, j = 0;
for (int i = 1; i <= n; ++i) {
int v = nums[i - 1];
j = Math.max(j, d[v]);
ans = Math.max(ans, s[i] - s[j]);
d[v] = i;
}
return ans;
}
}
class Solution {
public:
int maximumUniqueSubarray(vector<int>& nums) {
int d[10001]{};
int n = nums.size();
int s[n + 1];
s[0] = 0;
for (int i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
int ans = 0, j = 0;
for (int i = 1; i <= n; ++i) {
int v = nums[i - 1];
j = max(j, d[v]);
ans = max(ans, s[i] - s[j]);
d[v] = i;
}
return ans;
}
};
func maximumUniqueSubarray(nums []int) (ans int) {
d := [10001]int{}
n := len(nums)
s := make([]int, n+1)
for i, v := range nums {
s[i+1] = s[i] + v
}
for i, j := 1, 0; i <= n; i++ {
v := nums[i-1]
j = max(j, d[v])
ans = max(ans, s[i]-s[j])
d[v] = i
}
return
}
function maximumUniqueSubarray(nums: number[]): number {
const m = Math.max(...nums);
const n = nums.length;
const s: number[] = Array.from({ length: n + 1 }, () => 0);
for (let i = 1; i <= n; ++i) {
s[i] = s[i - 1] + nums[i - 1];
}
const d = Array.from({ length: m + 1 }, () => 0);
let [ans, j] = [0, 0];
for (let i = 1; i <= n; ++i) {
j = Math.max(j, d[nums[i - 1]]);
ans = Math.max(ans, s[i] - s[j]);
d[nums[i - 1]] = i;
}
return ans;
}
The problem is actually asking us to find the longest subarray in which all elements are distinct. We can use two pointers
We traverse the array, for each number
After the traversal, we can get the maximum sum of the subarray.
The time complexity is
class Solution:
def maximumUniqueSubarray(self, nums: List[int]) -> int:
vis = set()
ans = s = i = 0
for x in nums:
while x in vis:
y = nums[i]
s -= y
vis.remove(y)
i += 1
vis.add(x)
s += x
ans = max(ans, s)
return ans
class Solution {
public int maximumUniqueSubarray(int[] nums) {
Set<Integer> vis = new HashSet<>();
int ans = 0, s = 0, i = 0;
for (int x : nums) {
while (vis.contains(x)) {
s -= nums[i];
vis.remove(nums[i++]);
}
vis.add(x);
s += x;
ans = Math.max(ans, s);
}
return ans;
}
}
class Solution {
public:
int maximumUniqueSubarray(vector<int>& nums) {
unordered_set<int> vis;
int ans = 0, s = 0, i = 0;
for (int x : nums) {
while (vis.contains(x)) {
s -= nums[i];
vis.erase(nums[i++]);
}
vis.insert(x);
s += x;
ans = max(ans, s);
}
return ans;
}
};
func maximumUniqueSubarray(nums []int) (ans int) {
vis := map[int]bool{}
var s, i int
for _, x := range nums {
for vis[x] {
s -= nums[i]
vis[nums[i]] = false
i++
}
vis[x] = true
s += x
ans = max(ans, s)
}
return
}
function maximumUniqueSubarray(nums: number[]): number {
const vis: Set<number> = new Set();
let [ans, s, i] = [0, 0, 0];
for (const x of nums) {
while (vis.has(x)) {
s -= nums[i];
vis.delete(nums[i++]);
}
vis.add(x);
s += x;
ans = Math.max(ans, s);
}
return ans;
}