Skip to content

Latest commit

 

History

History
938 lines (822 loc) · 28.2 KB

File metadata and controls

938 lines (822 loc) · 28.2 KB
comments difficulty edit_url rating source tags
true
中等
1897
第 53 场双周赛 Q3
数组
数学
矩阵
前缀和
排序
堆(优先队列)

English Version

题目描述

给你一个 m x n 的整数矩阵 grid 。

菱形和 指的是 grid 中一个正菱形 边界 上的元素之和。本题中的菱形必须为正方形旋转45度,且四个角都在一个格子当中。下图是四个可行的菱形,每个菱形和应该包含的格子都用了相应颜色标注在图中。

 

注意,菱形可以是一个面积为 0 的区域,如上图中右下角的紫色菱形所示。

请你按照 降序 返回 grid 中三个最大的 互不相同的菱形和 。如果不同的和少于三个,则将它们全部返回。

 

示例 1:

输入:grid = [[3,4,5,1,3],[3,3,4,2,3],[20,30,200,40,10],[1,5,5,4,1],[4,3,2,2,5]]
输出:[228,216,211]
解释:最大的三个菱形和如上图所示。
- 蓝色:20 + 3 + 200 + 5 = 228
- 红色:200 + 2 + 10 + 4 = 216
- 绿色:5 + 200 + 4 + 2 = 211

示例 2:

输入:grid = [[1,2,3],[4,5,6],[7,8,9]]
输出:[20,9,8]
解释:最大的三个菱形和如上图所示。
- 蓝色:4 + 2 + 6 + 8 = 20
- 红色:9 (右下角红色的面积为 0 的菱形)
- 绿色:8 (下方中央面积为 0 的菱形)

示例 3:

输入:grid = [[7,7,7]]
输出:[7]
解释:所有三个可能的菱形和都相同,所以返回 [7] 。

 

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 100
  • 1 <= grid[i][j] <= 105

解法

方法一:枚举菱形中心点 + 前缀和 + 有序集合

我们可以预处理得到两个前缀和数组 $s_1$$s_2$,其中 $s_1[i][j]$ 表示以 $(i, j)$ 为末尾的左上对角线上的元素之和,而 $s_2[i][j]$ 表示以 $(i, j)$ 为末尾的右上对角线上的元素之和。

接下来,我们枚举每个位置 $(i, j)$,先将 $grid[i][j]$ 加入有序集合 $ss$ 中,然后枚举菱形的边长 $k$,那么以 $(i, j)$ 为中心点、边长为 $k$ 的菱形的和为:

$$ \begin{aligned} &\quad s_1[i + k][j] - s_1[i][j - k] + s_1[i][j + k] - s_1[i - k][j] \\ &+ s_2[i][j - k] - s_2[i - k][j] + s_2[i + k][j] - s_2[i][j + k] \\ &- grid[i + k - 1][j - 1] + grid[i - k - 1][j - 1] \end{aligned} $$

我们将这个值加入有序集合 $ss$ 中,同时保证有序集合 $ss$ 的大小不超过 $3$,最后将有序集合 $ss$ 中的元素逆序输出即可。

时间复杂度 $O(m \times n \times \min(m, n))$,空间复杂度 $O(m \times n)$。其中 $m$$n$ 分别是矩阵的行数和列数。

Python3

from sortedcontainers import SortedSet


class Solution:
    def getBiggestThree(self, grid: List[List[int]]) -> List[int]:
        m, n = len(grid), len(grid[0])
        s1 = [[0] * (n + 2) for _ in range(m + 1)]
        s2 = [[0] * (n + 2) for _ in range(m + 1)]
        for i, row in enumerate(grid, 1):
            for j, x in enumerate(row, 1):
                s1[i][j] = s1[i - 1][j - 1] + x
                s2[i][j] = s2[i - 1][j + 1] + x
        ss = SortedSet()
        for i, row in enumerate(grid, 1):
            for j, x in enumerate(row, 1):
                l = min(i - 1, m - i, j - 1, n - j)
                ss.add(x)
                for k in range(1, l + 1):
                    a = s1[i + k][j] - s1[i][j - k]
                    b = s1[i][j + k] - s1[i - k][j]
                    c = s2[i][j - k] - s2[i - k][j]
                    d = s2[i + k][j] - s2[i][j + k]
                    ss.add(
                        a + b + c + d - grid[i + k - 1][j - 1] + grid[i - k - 1][j - 1]
                    )
                while len(ss) > 3:
                    ss.remove(ss[0])
        return list(ss)[::-1]

Java

class Solution {
    public int[] getBiggestThree(int[][] grid) {
        int m = grid.length, n = grid[0].length;
        int[][] s1 = new int[m + 1][n + 2];
        int[][] s2 = new int[m + 1][n + 2];
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                s1[i][j] = s1[i - 1][j - 1] + grid[i - 1][j - 1];
                s2[i][j] = s2[i - 1][j + 1] + grid[i - 1][j - 1];
            }
        }
        TreeSet<Integer> ss = new TreeSet<>();
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                int l = Math.min(Math.min(i - 1, m - i), Math.min(j - 1, n - j));
                ss.add(grid[i - 1][j - 1]);
                for (int k = 1; k <= l; ++k) {
                    int a = s1[i + k][j] - s1[i][j - k];
                    int b = s1[i][j + k] - s1[i - k][j];
                    int c = s2[i][j - k] - s2[i - k][j];
                    int d = s2[i + k][j] - s2[i][j + k];
                    ss.add(a + b + c + d - grid[i + k - 1][j - 1] + grid[i - k - 1][j - 1]);
                }
                while (ss.size() > 3) {
                    ss.pollFirst();
                }
            }
        }
        int[] ans = new int[ss.size()];
        for (int i = 0; i < ans.length; ++i) {
            ans[i] = ss.pollLast();
        }
        return ans;
    }
}

C++

class Solution {
public:
    vector<int> getBiggestThree(vector<vector<int>>& grid) {
        int m = grid.size(), n = grid[0].size();
        vector<vector<int>> s1(m + 1, vector<int>(n + 2));
        vector<vector<int>> s2(m + 1, vector<int>(n + 2));
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                s1[i][j] = s1[i - 1][j - 1] + grid[i - 1][j - 1];
                s2[i][j] = s2[i - 1][j + 1] + grid[i - 1][j - 1];
            }
        }
        set<int> ss;
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                int l = min({i - 1, m - i, j - 1, n - j});
                ss.insert(grid[i - 1][j - 1]);
                for (int k = 1; k <= l; ++k) {
                    int a = s1[i + k][j] - s1[i][j - k];
                    int b = s1[i][j + k] - s1[i - k][j];
                    int c = s2[i][j - k] - s2[i - k][j];
                    int d = s2[i + k][j] - s2[i][j + k];
                    ss.insert(a + b + c + d - grid[i + k - 1][j - 1] + grid[i - k - 1][j - 1]);
                }
                while (ss.size() > 3) {
                    ss.erase(ss.begin());
                }
            }
        }
        return vector<int>(ss.rbegin(), ss.rend());
    }
};

Go

func getBiggestThree(grid [][]int) []int {
	m, n := len(grid), len(grid[0])
	s1 := make([][]int, m+1)
	s2 := make([][]int, m+1)
	for i := range s1 {
		s1[i] = make([]int, n+2)
		s2[i] = make([]int, n+2)
	}
	for i := 1; i <= m; i++ {
		for j := 1; j <= n; j++ {
			s1[i][j] = s1[i-1][j-1] + grid[i-1][j-1]
			s2[i][j] = s2[i-1][j+1] + grid[i-1][j-1]
		}
	}

	ss := treemap.NewWithIntComparator()
	for i := 1; i <= m; i++ {
		for j := 1; j <= n; j++ {
			l := min(i-1, m-i, j-1, n-j)
			ss.Put(grid[i-1][j-1], nil)
			for k := 1; k <= l; k++ {
				a := s1[i+k][j] - s1[i][j-k]
				b := s1[i][j+k] - s1[i-k][j]
				c := s2[i][j-k] - s2[i-k][j]
				d := s2[i+k][j] - s2[i][j+k]
				ss.Put(a+b+c+d-grid[i+k-1][j-1]+grid[i-k-1][j-1], nil)
			}
			for ss.Size() > 3 {
				x, _ := ss.Min()
				ss.Remove(x.(int))
			}
		}
	}
	ans := make([]int, ss.Size())
	for i, k := range ss.Keys() {
		ans[len(ans)-i-1] = k.(int)
	}
	return ans
}

TypeScript

function getBiggestThree(grid: number[][]): number[] {
    const m = grid.length;
    const n = grid[0].length;
    const s1: number[][] = Array.from({ length: m + 1 }, () => Array(n + 2).fill(0));
    const s2: number[][] = Array.from({ length: m + 1 }, () => Array(n + 2).fill(0));
    for (let i = 1; i <= m; ++i) {
        for (let j = 1; j <= n; ++j) {
            s1[i][j] = s1[i - 1][j - 1] + grid[i - 1][j - 1];
            s2[i][j] = s2[i - 1][j + 1] + grid[i - 1][j - 1];
        }
    }
    const ss = new TreeSet<number>();
    for (let i = 1; i <= m; ++i) {
        for (let j = 1; j <= n; ++j) {
            const l = Math.min(i - 1, m - i, j - 1, n - j);
            ss.add(grid[i - 1][j - 1]);
            for (let k = 1; k <= l; ++k) {
                const a = s1[i + k][j] - s1[i][j - k];
                const b = s1[i][j + k] - s1[i - k][j];
                const c = s2[i][j - k] - s2[i - k][j];
                const d = s2[i + k][j] - s2[i][j + k];
                ss.add(a + b + c + d - grid[i + k - 1][j - 1] + grid[i - k - 1][j - 1]);
            }
            while (ss.size() > 3) {
                ss.shift();
            }
        }
    }
    return [...ss].reverse();
}

type Compare<T> = (lhs: T, rhs: T) => number;

class RBTreeNode<T = number> {
    data: T;
    count: number;
    left: RBTreeNode<T> | null;
    right: RBTreeNode<T> | null;
    parent: RBTreeNode<T> | null;
    color: number;
    constructor(data: T) {
        this.data = data;
        this.left = this.right = this.parent = null;
        this.color = 0;
        this.count = 1;
    }

    sibling(): RBTreeNode<T> | null {
        if (!this.parent) return null; // sibling null if no parent
        return this.isOnLeft() ? this.parent.right : this.parent.left;
    }

    isOnLeft(): boolean {
        return this === this.parent!.left;
    }

    hasRedChild(): boolean {
        return (
            Boolean(this.left && this.left.color === 0) ||
            Boolean(this.right && this.right.color === 0)
        );
    }
}

class RBTree<T> {
    root: RBTreeNode<T> | null;
    lt: (l: T, r: T) => boolean;
    constructor(compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0)) {
        this.root = null;
        this.lt = (l: T, r: T) => compare(l, r) < 0;
    }

    rotateLeft(pt: RBTreeNode<T>): void {
        const right = pt.right!;
        pt.right = right.left;

        if (pt.right) pt.right.parent = pt;
        right.parent = pt.parent;

        if (!pt.parent) this.root = right;
        else if (pt === pt.parent.left) pt.parent.left = right;
        else pt.parent.right = right;

        right.left = pt;
        pt.parent = right;
    }

    rotateRight(pt: RBTreeNode<T>): void {
        const left = pt.left!;
        pt.left = left.right;

        if (pt.left) pt.left.parent = pt;
        left.parent = pt.parent;

        if (!pt.parent) this.root = left;
        else if (pt === pt.parent.left) pt.parent.left = left;
        else pt.parent.right = left;

        left.right = pt;
        pt.parent = left;
    }

    swapColor(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
        const tmp = p1.color;
        p1.color = p2.color;
        p2.color = tmp;
    }

    swapData(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
        const tmp = p1.data;
        p1.data = p2.data;
        p2.data = tmp;
    }

    fixAfterInsert(pt: RBTreeNode<T>): void {
        let parent = null;
        let grandParent = null;

        while (pt !== this.root && pt.color !== 1 && pt.parent?.color === 0) {
            parent = pt.parent;
            grandParent = pt.parent.parent;

            /*  Case : A
                Parent of pt is left child of Grand-parent of pt */
            if (parent === grandParent?.left) {
                const uncle = grandParent.right;

                /* Case : 1
                   The uncle of pt is also red
                   Only Recoloring required */
                if (uncle && uncle.color === 0) {
                    grandParent.color = 0;
                    parent.color = 1;
                    uncle.color = 1;
                    pt = grandParent;
                } else {
                    /* Case : 2
                       pt is right child of its parent
                       Left-rotation required */
                    if (pt === parent.right) {
                        this.rotateLeft(parent);
                        pt = parent;
                        parent = pt.parent;
                    }

                    /* Case : 3
                       pt is left child of its parent
                       Right-rotation required */
                    this.rotateRight(grandParent);
                    this.swapColor(parent!, grandParent);
                    pt = parent!;
                }
            } else {
                /* Case : B
               Parent of pt is right child of Grand-parent of pt */
                const uncle = grandParent!.left;

                /*  Case : 1
                    The uncle of pt is also red
                    Only Recoloring required */
                if (uncle != null && uncle.color === 0) {
                    grandParent!.color = 0;
                    parent.color = 1;
                    uncle.color = 1;
                    pt = grandParent!;
                } else {
                    /* Case : 2
                       pt is left child of its parent
                       Right-rotation required */
                    if (pt === parent.left) {
                        this.rotateRight(parent);
                        pt = parent;
                        parent = pt.parent;
                    }

                    /* Case : 3
                       pt is right child of its parent
                       Left-rotation required */
                    this.rotateLeft(grandParent!);
                    this.swapColor(parent!, grandParent!);
                    pt = parent!;
                }
            }
        }
        this.root!.color = 1;
    }

    delete(val: T): boolean {
        const node = this.find(val);
        if (!node) return false;
        node.count--;
        if (!node.count) this.deleteNode(node);
        return true;
    }

    deleteAll(val: T): boolean {
        const node = this.find(val);
        if (!node) return false;
        this.deleteNode(node);
        return true;
    }

    deleteNode(v: RBTreeNode<T>): void {
        const u = BSTreplace(v);

        // True when u and v are both black
        const uvBlack = (u === null || u.color === 1) && v.color === 1;
        const parent = v.parent!;

        if (!u) {
            // u is null therefore v is leaf
            if (v === this.root) this.root = null;
            // v is root, making root null
            else {
                if (uvBlack) {
                    // u and v both black
                    // v is leaf, fix double black at v
                    this.fixDoubleBlack(v);
                } else {
                    // u or v is red
                    if (v.sibling()) {
                        // sibling is not null, make it red"
                        v.sibling()!.color = 0;
                    }
                }
                // delete v from the tree
                if (v.isOnLeft()) parent.left = null;
                else parent.right = null;
            }
            return;
        }

        if (!v.left || !v.right) {
            // v has 1 child
            if (v === this.root) {
                // v is root, assign the value of u to v, and delete u
                v.data = u.data;
                v.left = v.right = null;
            } else {
                // Detach v from tree and move u up
                if (v.isOnLeft()) parent.left = u;
                else parent.right = u;
                u.parent = parent;
                if (uvBlack) this.fixDoubleBlack(u);
                // u and v both black, fix double black at u
                else u.color = 1; // u or v red, color u black
            }
            return;
        }

        // v has 2 children, swap data with successor and recurse
        this.swapData(u, v);
        this.deleteNode(u);

        // find node that replaces a deleted node in BST
        function BSTreplace(x: RBTreeNode<T>): RBTreeNode<T> | null {
            // when node have 2 children
            if (x.left && x.right) return successor(x.right);
            // when leaf
            if (!x.left && !x.right) return null;
            // when single child
            return x.left ?? x.right;
        }
        // find node that do not have a left child
        // in the subtree of the given node
        function successor(x: RBTreeNode<T>): RBTreeNode<T> {
            let temp = x;
            while (temp.left) temp = temp.left;
            return temp;
        }
    }

    fixDoubleBlack(x: RBTreeNode<T>): void {
        if (x === this.root) return; // Reached root

        const sibling = x.sibling();
        const parent = x.parent!;
        if (!sibling) {
            // No sibiling, double black pushed up
            this.fixDoubleBlack(parent);
        } else {
            if (sibling.color === 0) {
                // Sibling red
                parent.color = 0;
                sibling.color = 1;
                if (sibling.isOnLeft()) this.rotateRight(parent);
                // left case
                else this.rotateLeft(parent); // right case
                this.fixDoubleBlack(x);
            } else {
                // Sibling black
                if (sibling.hasRedChild()) {
                    // at least 1 red children
                    if (sibling.left && sibling.left.color === 0) {
                        if (sibling.isOnLeft()) {
                            // left left
                            sibling.left.color = sibling.color;
                            sibling.color = parent.color;
                            this.rotateRight(parent);
                        } else {
                            // right left
                            sibling.left.color = parent.color;
                            this.rotateRight(sibling);
                            this.rotateLeft(parent);
                        }
                    } else {
                        if (sibling.isOnLeft()) {
                            // left right
                            sibling.right!.color = parent.color;
                            this.rotateLeft(sibling);
                            this.rotateRight(parent);
                        } else {
                            // right right
                            sibling.right!.color = sibling.color;
                            sibling.color = parent.color;
                            this.rotateLeft(parent);
                        }
                    }
                    parent.color = 1;
                } else {
                    // 2 black children
                    sibling.color = 0;
                    if (parent.color === 1) this.fixDoubleBlack(parent);
                    else parent.color = 1;
                }
            }
        }
    }

    insert(data: T): boolean {
        // search for a position to insert
        let parent = this.root;
        while (parent) {
            if (this.lt(data, parent.data)) {
                if (!parent.left) break;
                else parent = parent.left;
            } else if (this.lt(parent.data, data)) {
                if (!parent.right) break;
                else parent = parent.right;
            } else break;
        }

        // insert node into parent
        const node = new RBTreeNode(data);
        if (!parent) this.root = node;
        else if (this.lt(node.data, parent.data)) parent.left = node;
        else if (this.lt(parent.data, node.data)) parent.right = node;
        else {
            parent.count++;
            return false;
        }
        node.parent = parent;
        this.fixAfterInsert(node);
        return true;
    }

    find(data: T): RBTreeNode<T> | null {
        let p = this.root;
        while (p) {
            if (this.lt(data, p.data)) {
                p = p.left;
            } else if (this.lt(p.data, data)) {
                p = p.right;
            } else break;
        }
        return p ?? null;
    }

    *inOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
        if (!root) return;
        for (const v of this.inOrder(root.left!)) yield v;
        yield root.data;
        for (const v of this.inOrder(root.right!)) yield v;
    }

    *reverseInOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
        if (!root) return;
        for (const v of this.reverseInOrder(root.right!)) yield v;
        yield root.data;
        for (const v of this.reverseInOrder(root.left!)) yield v;
    }
}

class TreeSet<T = number> {
    _size: number;
    tree: RBTree<T>;
    compare: Compare<T>;
    constructor(
        collection: T[] | Compare<T> = [],
        compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0),
    ) {
        if (typeof collection === 'function') {
            compare = collection;
            collection = [];
        }
        this._size = 0;
        this.compare = compare;
        this.tree = new RBTree(compare);
        for (const val of collection) this.add(val);
    }

    size(): number {
        return this._size;
    }

    has(val: T): boolean {
        return !!this.tree.find(val);
    }

    add(val: T): boolean {
        const successful = this.tree.insert(val);
        this._size += successful ? 1 : 0;
        return successful;
    }

    delete(val: T): boolean {
        const deleted = this.tree.deleteAll(val);
        this._size -= deleted ? 1 : 0;
        return deleted;
    }

    ceil(val: T): T | undefined {
        let p = this.tree.root;
        let higher = null;
        while (p) {
            if (this.compare(p.data, val) >= 0) {
                higher = p;
                p = p.left;
            } else {
                p = p.right;
            }
        }
        return higher?.data;
    }

    floor(val: T): T | undefined {
        let p = this.tree.root;
        let lower = null;
        while (p) {
            if (this.compare(val, p.data) >= 0) {
                lower = p;
                p = p.right;
            } else {
                p = p.left;
            }
        }
        return lower?.data;
    }

    higher(val: T): T | undefined {
        let p = this.tree.root;
        let higher = null;
        while (p) {
            if (this.compare(val, p.data) < 0) {
                higher = p;
                p = p.left;
            } else {
                p = p.right;
            }
        }
        return higher?.data;
    }

    lower(val: T): T | undefined {
        let p = this.tree.root;
        let lower = null;
        while (p) {
            if (this.compare(p.data, val) < 0) {
                lower = p;
                p = p.right;
            } else {
                p = p.left;
            }
        }
        return lower?.data;
    }

    first(): T | undefined {
        return this.tree.inOrder().next().value;
    }

    last(): T | undefined {
        return this.tree.reverseInOrder().next().value;
    }

    shift(): T | undefined {
        const first = this.first();
        if (first === undefined) return undefined;
        this.delete(first);
        return first;
    }

    pop(): T | undefined {
        const last = this.last();
        if (last === undefined) return undefined;
        this.delete(last);
        return last;
    }

    *[Symbol.iterator](): Generator<T, void, void> {
        for (const val of this.values()) yield val;
    }

    *keys(): Generator<T, void, void> {
        for (const val of this.values()) yield val;
    }

    *values(): Generator<T, undefined, void> {
        for (const val of this.tree.inOrder()) yield val;
        return undefined;
    }

    /**
     * Return a generator for reverse order traversing the set
     */
    *rvalues(): Generator<T, undefined, void> {
        for (const val of this.tree.reverseInOrder()) yield val;
        return undefined;
    }
}

class TreeMultiSet<T = number> {
    _size: number;
    tree: RBTree<T>;
    compare: Compare<T>;
    constructor(
        collection: T[] | Compare<T> = [],
        compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0),
    ) {
        if (typeof collection === 'function') {
            compare = collection;
            collection = [];
        }
        this._size = 0;
        this.compare = compare;
        this.tree = new RBTree(compare);
        for (const val of collection) this.add(val);
    }

    size(): number {
        return this._size;
    }

    has(val: T): boolean {
        return !!this.tree.find(val);
    }

    add(val: T): boolean {
        const successful = this.tree.insert(val);
        this._size++;
        return successful;
    }

    delete(val: T): boolean {
        const successful = this.tree.delete(val);
        if (!successful) return false;
        this._size--;
        return true;
    }

    count(val: T): number {
        const node = this.tree.find(val);
        return node ? node.count : 0;
    }

    ceil(val: T): T | undefined {
        let p = this.tree.root;
        let higher = null;
        while (p) {
            if (this.compare(p.data, val) >= 0) {
                higher = p;
                p = p.left;
            } else {
                p = p.right;
            }
        }
        return higher?.data;
    }

    floor(val: T): T | undefined {
        let p = this.tree.root;
        let lower = null;
        while (p) {
            if (this.compare(val, p.data) >= 0) {
                lower = p;
                p = p.right;
            } else {
                p = p.left;
            }
        }
        return lower?.data;
    }

    higher(val: T): T | undefined {
        let p = this.tree.root;
        let higher = null;
        while (p) {
            if (this.compare(val, p.data) < 0) {
                higher = p;
                p = p.left;
            } else {
                p = p.right;
            }
        }
        return higher?.data;
    }

    lower(val: T): T | undefined {
        let p = this.tree.root;
        let lower = null;
        while (p) {
            if (this.compare(p.data, val) < 0) {
                lower = p;
                p = p.right;
            } else {
                p = p.left;
            }
        }
        return lower?.data;
    }

    first(): T | undefined {
        return this.tree.inOrder().next().value;
    }

    last(): T | undefined {
        return this.tree.reverseInOrder().next().value;
    }

    shift(): T | undefined {
        const first = this.first();
        if (first === undefined) return undefined;
        this.delete(first);
        return first;
    }

    pop(): T | undefined {
        const last = this.last();
        if (last === undefined) return undefined;
        this.delete(last);
        return last;
    }

    *[Symbol.iterator](): Generator<T, void, void> {
        yield* this.values();
    }

    *keys(): Generator<T, void, void> {
        for (const val of this.values()) yield val;
    }

    *values(): Generator<T, undefined, void> {
        for (const val of this.tree.inOrder()) {
            let count = this.count(val);
            while (count--) yield val;
        }
        return undefined;
    }

    /**
     * Return a generator for reverse order traversing the multi-set
     */
    *rvalues(): Generator<T, undefined, void> {
        for (const val of this.tree.reverseInOrder()) {
            let count = this.count(val);
            while (count--) yield val;
        }
        return undefined;
    }
}