Skip to content

Latest commit

 

History

History
167 lines (122 loc) · 4.21 KB

File metadata and controls

167 lines (122 loc) · 4.21 KB
comments difficulty edit_url rating source tags
true
中等
1517
第 345 场周赛 Q2
位运算
数组

English Version

题目描述

下标从 0 开始、长度为 n 的数组 derived 是由同样长度为 n 的原始 二进制数组 original 通过计算相邻值的 按位异或(⊕)派生而来。

特别地,对于范围 [0, n - 1] 内的每个下标 i

  • 如果 i = n - 1 ,那么 derived[i] = original[i] ⊕ original[0]
  • 否则 derived[i] = original[i] ⊕ original[i + 1]

给你一个数组 derived ,请判断是否存在一个能够派生得到 derived有效原始二进制数组 original

如果存在满足要求的原始二进制数组,返回 true ;否则,返回 false

  • 二进制数组是仅由 01 组成的数组。

 

示例 1:

输入:derived = [1,1,0]
输出:true
解释:能够派生得到 [1,1,0] 的有效原始二进制数组是 [0,1,0] :
derived[0] = original[0] ⊕ original[1] = 0 ⊕ 1 = 1 
derived[1] = original[1] ⊕ original[2] = 1 ⊕ 0 = 1
derived[2] = original[2] ⊕ original[0] = 0 ⊕ 0 = 0

示例 2:

输入:derived = [1,1]
输出:true
解释:能够派生得到 [1,1] 的有效原始二进制数组是 [0,1] :
derived[0] = original[0] ⊕ original[1] = 1
derived[1] = original[1] ⊕ original[0] = 1

示例 3:

输入:derived = [1,0]
输出:false
解释:不存在能够派生得到 [1,0] 的有效原始二进制数组。

 

提示:

  • n == derived.length
  • 1 <= n <= 105
  • derived 中的值不是 0 就是 1

解法

方法一:位运算

我们不妨假设原始二进制数组为 $a$,派生数组为 $b$,那么有:

$$ b_0 = a_0 \oplus a_1 \\ b_1 = a_1 \oplus a_2 \\ \cdots \\ b_{n-1} = a_{n-1} \oplus a_0 $$

由于异或运算满足交换律和结合律,因此有:

$$ b_0 \oplus b_1 \oplus \cdots \oplus b_{n-1} = (a_0 \oplus a_1) \oplus (a_1 \oplus a_2) \oplus \cdots \oplus (a_{n-1} \oplus a_0) = 0 $$

因此,只要派生数组的所有元素的异或和为 $0$,就一定存在一个满足要求的原始二进制数组。

时间复杂度 $O(n)$,其中 $n$ 为数组长度。空间复杂度 $O(1)$

Python3

class Solution:
    def doesValidArrayExist(self, derived: List[int]) -> bool:
        return reduce(xor, derived) == 0

Java

class Solution {
    public boolean doesValidArrayExist(int[] derived) {
        int s = 0;
        for (int x : derived) {
            s ^= x;
        }
        return s == 0;
    }
}

C++

class Solution {
public:
    bool doesValidArrayExist(vector<int>& derived) {
        int s = 0;
        for (int x : derived) {
            s ^= x;
        }
        return s == 0;
    }
};

Go

func doesValidArrayExist(derived []int) bool {
	s := 0
	for _, x := range derived {
		s ^= x
	}
	return s == 0
}

TypeScript

function doesValidArrayExist(derived: number[]): boolean {
    return derived.reduce((acc, x) => acc ^ x) === 0;
}