comments | difficulty | edit_url | tags | ||
---|---|---|---|---|---|
true |
Hard |
|
Given an array of integers nums
, you are allowed to perform the following operation any number of times:
- Remove a strictly increasing subsequence from the array.
Your task is to find the minimum number of operations required to make the array empty.
Example 1:
Input: nums = [5,3,1,4,2]
Output: 3
Explanation:
We remove subsequences [1, 2]
, [3, 4]
, [5]
.
Example 2:
Input: nums = [1,2,3,4,5]
Output: 1
Example 3:
Input: nums = [5,4,3,2,1]
Output: 5
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 105
We traverse the array
From this analysis, we can observe that the last elements of the preceding sequences are in a monotonically decreasing order. Therefore, we can use binary search to find the position of the first element in the preceding sequences that is smaller than
Finally, we return the number of sequences.
The time complexity is
class Solution:
def minOperations(self, nums: List[int]) -> int:
g = []
for x in nums:
l, r = 0, len(g)
while l < r:
mid = (l + r) >> 1
if g[mid] < x:
r = mid
else:
l = mid + 1
if l == len(g):
g.append(x)
else:
g[l] = x
return len(g)
class Solution {
public int minOperations(int[] nums) {
List<Integer> g = new ArrayList<>();
for (int x : nums) {
int l = 0, r = g.size();
while (l < r) {
int mid = (l + r) >> 1;
if (g.get(mid) < x) {
r = mid;
} else {
l = mid + 1;
}
}
if (l == g.size()) {
g.add(x);
} else {
g.set(l, x);
}
}
return g.size();
}
}
class Solution {
public:
int minOperations(vector<int>& nums) {
vector<int> g;
for (int x : nums) {
int l = 0, r = g.size();
while (l < r) {
int mid = (l + r) >> 1;
if (g[mid] < x) {
r = mid;
} else {
l = mid + 1;
}
}
if (l == g.size()) {
g.push_back(x);
} else {
g[l] = x;
}
}
return g.size();
}
};
func minOperations(nums []int) int {
g := []int{}
for _, x := range nums {
l, r := 0, len(g)
for l < r {
mid := (l + r) >> 1
if g[mid] < x {
r = mid
} else {
l = mid + 1
}
}
if l == len(g) {
g = append(g, x)
} else {
g[l] = x
}
}
return len(g)
}
function minOperations(nums: number[]): number {
const g: number[] = [];
for (const x of nums) {
let [l, r] = [0, g.length];
while (l < r) {
const mid = (l + r) >> 1;
if (g[mid] < x) {
r = mid;
} else {
l = mid + 1;
}
}
if (l === g.length) {
g.push(x);
} else {
g[l] = x;
}
}
return g.length;
}
impl Solution {
pub fn min_operations(nums: Vec<i32>) -> i32 {
let mut g = Vec::new();
for &x in nums.iter() {
let mut l = 0;
let mut r = g.len();
while l < r {
let mid = (l + r) / 2;
if g[mid] < x {
r = mid;
} else {
l = mid + 1;
}
}
if l == g.len() {
g.push(x);
} else {
g[l] = x;
}
}
g.len() as i32
}
}