forked from frostinassiky/gtad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gtad_train.py
133 lines (108 loc) · 4.63 KB
/
gtad_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
import torch
import torch.nn.parallel
import torch.optim as optim
from torch import autograd
import numpy as np
from gtad_lib import opts
from gtad_lib.models import GTAD
from gtad_lib.dataset import VideoDataSet
from gtad_lib.loss_function import get_mask, subgraph_loss_func, node_loss_func
################## fix everything ##################
import random
seed = 0
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
#######################################################
# keep track of statistics
class AverageMeter(object):
def __init__(self):
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.sum += val
self.count += n
def avg(self):
return self.sum/self.count
# train
def train(data_loader, model, optimizer, epoch, bm_mask):
model.train()
total_am, subgraph_am, node_am = AverageMeter(), AverageMeter(), AverageMeter()
for n_iter, (input_data, label_confidence, label_start, label_end) in enumerate(data_loader):
# forward pass
confidence_map, start, end = model(input_data.cuda())
# loss
gt_iou_map = label_confidence.cuda() * bm_mask
subgraph_loss = subgraph_loss_func(confidence_map, gt_iou_map, bm_mask)
node_loss = node_loss_func(start, end, label_start.cuda(), label_end.cuda())
loss = subgraph_loss + node_loss
# update step
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1)
optimizer.step()
# update losses
total_am.update(loss.detach())
subgraph_am.update(subgraph_loss.detach())
node_am.update(node_loss.detach())
print("[Epoch {0:03d}]\tLoss {1:.2f} = {2:.2f} + {3:.2f} (train)".format(
epoch, total_am.avg(), subgraph_am.avg(), node_am.avg()))
def test(data_loader, model, epoch, bm_mask):
model.eval()
best_loss = 1e10
total_am, subgraph_am, node_am = AverageMeter(), AverageMeter(), AverageMeter()
with torch.no_grad():
for n_iter, (input_data, label_confidence, label_start, label_end) in enumerate(data_loader):
# forward pass
confidence_map, start, end = model(input_data.cuda())
# loss
gt_iou_map = label_confidence.cuda() * bm_mask
subgraph_loss = subgraph_loss_func(confidence_map, gt_iou_map, bm_mask)
node_loss = node_loss_func(start, end, label_start.cuda(), label_end.cuda())
loss = subgraph_loss + node_loss
# update losses
total_am.update(loss.detach())
subgraph_am.update(subgraph_loss.detach())
node_am.update(node_loss.detach())
print("[Epoch {0:03d}]\tLoss {1:.2f} = {2:.2f} + {3:.2f} (validation)".format(
epoch, total_am.avg(), subgraph_am.avg(), node_am.avg()))
state = {'epoch': epoch + 1,
'state_dict': model.state_dict()}
torch.save(state, opt["output"] + "/GTAD_checkpoint.pth.tar")
if total_am.avg() < best_loss:
best_loss = total_am.avg()
torch.save(state, opt["output"] + "/GTAD_best.pth.tar")
if __name__ == '__main__':
opt = opts.parse_opt()
opt = vars(opt)
if not os.path.exists(opt["output"]):
os.makedirs(opt["output"])
# model = GTAD(opt)
# a = torch.randn(1, 400, 100)
# b, c = model(a)
# print(b.shape, c.shape)
# print(b)
# print(c)
model = GTAD(opt)
model = torch.nn.DataParallel(model, device_ids=list(range(opt['n_gpu']))).cuda()
print('use {} gpus to train!'.format(opt['n_gpu']))
optimizer = optim.Adam(model.parameters(), lr=opt["training_lr"],
weight_decay=opt["weight_decay"])
train_loader = torch.utils.data.DataLoader(VideoDataSet(opt, subset="train"),
batch_size=opt["batch_size"], shuffle=True,
num_workers=8, pin_memory=True)
test_loader = torch.utils.data.DataLoader(VideoDataSet(opt, subset="validation"),
batch_size=opt["batch_size"], shuffle=False,
num_workers=8, pin_memory=True)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=opt["step_size"], gamma=opt["step_gamma"])
mask = get_mask(opt["temporal_scale"], opt['max_duration']).cuda()
for epoch in range(opt["train_epochs"]):
with autograd.detect_anomaly():
train(train_loader, model, optimizer, epoch, mask)
test(test_loader, model, epoch, mask)
scheduler.step()