-
Notifications
You must be signed in to change notification settings - Fork 6
/
iq_normalize.cpp
155 lines (144 loc) · 5.28 KB
/
iq_normalize.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
/*
===========================================================================
Copyright (C) 2018 Emvivre
This file is part of IQ_NORMALIZE.
IQ_NORMALIZE is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
IQ_NORMALIZE is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with IQ_NORMALIZE. If not, see <http://www.gnu.org/licenses/>.
===========================================================================
*/
#include <iostream>
#include <complex>
#include <limits>
static const unsigned int BUFFER_LEN = 20000;
template <class T>
void normalize_scalar( double max_norm, FILE* fd_input, FILE* fd_output )
{
T* in_buff = new T[ BUFFER_LEN ];
T* out_buff = new T[ BUFFER_LEN ];
double max = -std::numeric_limits<double>::infinity();
unsigned int nb_sample_read;
while( (nb_sample_read = fread( in_buff, sizeof(*in_buff), BUFFER_LEN, fd_input)) > 0 ) {
for ( unsigned int i = 0; i < nb_sample_read; i++ ) {
const T v = in_buff[ i ];
double n = (v > 0) ? v : -v;
if ( n > max ) {
max = n;
}
}
for ( unsigned int i = 0; i < nb_sample_read; i++ ) {
out_buff[ i ] = max_norm * in_buff[ i ] / max;
}
fwrite( out_buff, sizeof(*out_buff), nb_sample_read, fd_output );
fflush( fd_output );
}
delete[] out_buff;
delete[] in_buff;
}
template <class T>
void normalize_iq( double max_norm, FILE* fd_input, FILE* fd_output )
{
T* in_buff = new T[ 2*BUFFER_LEN ];
T* out_buff = new T[ 2*BUFFER_LEN ];
double max = -std::numeric_limits<double>::infinity();
unsigned int nb_sample_read;
while( (nb_sample_read = fread( in_buff, 2*sizeof(*in_buff), BUFFER_LEN, fd_input)) > 0 ) {
for ( unsigned int i = 0; i < nb_sample_read; i++ ) {
const std::complex<double> c (in_buff[ 2*i ], in_buff[ 2*i+1 ]);
double n = std::abs( c );
if ( n > max ) {
max = n;
}
}
for ( unsigned int i = 0; i < nb_sample_read; i++ ) {
out_buff[ 2*i ] = max_norm * in_buff[ 2*i ] / max;
out_buff[ 2*i+1 ] = max_norm * in_buff[ 2*i+1 ] / max;
}
fwrite( out_buff, 2*sizeof(*out_buff), nb_sample_read, fd_output );
}
delete[] out_buff;
delete[] in_buff;
}
int main(int argc, char** argv)
{
if ( argc < 2 ) {
std::cerr << "Usage: " << argv[0] << " <OPTIONS>\n"
" -m <MAX_VALUE> (default: 0)\n"
" -t <SIGNAL_TYPE> : scalar | iq (default: iq)\n"
" -d <DATA_FORMAT> : i8 | i16 | i32 | f32 | f64 (default: i16)\n"
" -i <INPUT_CAPTURE_FILE> (default: -)\n"
" -o <OUTPUT_CAPTURE_FILE> (default: -)\n";
return 1;
}
const std::string prog_name = argv[0];
double max_value = 0;
std::string data_format = "i16";
std::string signal_type = "iq";
const char* input_capture_file = "-";
const char* output_capture_file = "-";
for ( int i = 1; i < argc; i += 2 ) {
std::string arg = argv[i];
if ( arg == "-m" ) {
max_value = atof( argv[i+1] );
} else if ( arg == "-t" ) {
signal_type = argv[i+1];
} else if ( arg == "-d" ) {
data_format = argv[i+1];
} else if ( arg == "-i" ) {
input_capture_file = argv[i+1];
} else if ( arg == "-o" ) {
output_capture_file = argv[i+1];
}
}
if ( data_format != "i8" &&
data_format != "i16" &&
data_format != "i32" &&
data_format != "f32" &&
data_format != "f64" ) {
std::cerr << prog_name << " : ERROR: please set a valid data format !\n";
return 1;
}
if ( signal_type != "scalar" && signal_type != "iq" ) {
std::cerr << prog_name << " : ERROR: please set a valid signal type !\n";
return 1;
}
FILE* fd_input = stdin;
if ( input_capture_file != std::string("-") ) {
fd_input = fopen( input_capture_file, "rb" );
if ( fd_input == NULL ) {
std::cerr << prog_name << " : ";
perror("fopen()");
return 1;
}
}
FILE* fd_output = stdout;
if ( output_capture_file != std::string("-") ) {
fd_output = fopen( output_capture_file, "w+b" );
if ( fd_output == NULL ) {
std::cerr << prog_name << " : ";
perror("fopen()");
return 1;
}
}
if ( signal_type == "scalar" ) {
if ( data_format == "i8" ) { normalize_scalar<char>( max_value, fd_input, fd_output); }
else if ( data_format == "i16" ) { normalize_scalar<short>( max_value, fd_input, fd_output); }
else if ( data_format == "i32" ) { normalize_scalar<int>( max_value, fd_input, fd_output); }
else if ( data_format == "f32" ) { normalize_scalar<float>( max_value, fd_input, fd_output); }
else if ( data_format == "f64" ) { normalize_scalar<double>( max_value, fd_input, fd_output); }
} else {
if ( data_format == "i8" ) { normalize_iq<char>( max_value, fd_input, fd_output); }
else if ( data_format == "i16" ) { normalize_iq<short>( max_value, fd_input, fd_output); }
else if ( data_format == "i32" ) { normalize_iq<int>( max_value, fd_input, fd_output); }
else if ( data_format == "f32" ) { normalize_iq<float>( max_value, fd_input, fd_output); }
else if ( data_format == "f64" ) { normalize_iq<double>( max_value, fd_input, fd_output); }
}
return 0;
}