-
Notifications
You must be signed in to change notification settings - Fork 0
/
configure_finetuning.py
172 lines (153 loc) · 7.43 KB
/
configure_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Config controlling hyperparameters for fine-tuning ELECTRA."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import tensorflow.compat.v1 as tf
class FinetuningConfig(object):
"""Fine-tuning hyperparameters."""
def __init__(self, model_name, data_dir, **kwargs):
# general
self.model_name = model_name
self.debug = False # debug mode for quickly running things
self.log_examples = False # print out some train examples for debugging
self.num_trials = 1 # how many train+eval runs to perform
self.do_train = True # train a model
self.do_eval = True # evaluate the model
self.keep_all_models = True # if False, only keep the last trial's ckpt
# model
self.model_size = "small" # one of "small", "base", or "large"
self.task_names = ["chunk"] # which tasks to learn
# override the default transformer hparams for the provided model size; see
# modeling.BertConfig for the possible hparams and util.training_utils for
# the defaults
self.model_hparam_overrides = (
kwargs["model_hparam_overrides"]
if "model_hparam_overrides" in kwargs else {})
self.embedding_size = None # bert hidden size by default
self.vocab_size = 169300 # number of tokens in the vocabulary
self.do_lower_case = True
# training
self.learning_rate = 1e-4
self.weight_decay_rate = 0.01
self.layerwise_lr_decay = 0.8 # if > 0, the learning rate for a layer is
# lr * lr_decay^(depth - max_depth) i.e.,
# shallower layers have lower learning rates
self.num_train_epochs = 3.0 # passes over the dataset during training
self.warmup_proportion = 0.1 # how much of training to warm up the LR for
self.save_checkpoints_steps = 1000000
self.iterations_per_loop = 1000
self.use_tfrecords_if_existing = False # don't make tfrecords and write them
# to disc if existing ones are found
# writing model outputs to disc
self.write_test_outputs = False # whether to write test set outputs,
# currently supported for GLUE + SQuAD 2.0
self.n_writes_test = 5 # write test set predictions for the first n trials
# sizing
self.max_seq_length = 128
self.train_batch_size = 32
self.eval_batch_size = 32
self.predict_batch_size = 32
self.double_unordered = True # for tasks like paraphrase where sentence
# order doesn't matter, train the model on
# on both sentence orderings for each example
# for qa tasks
self.max_query_length = 64 # max tokens in q as opposed to context
self.doc_stride = 128 # stride when splitting doc into multiple examples
self.n_best_size = 20 # number of predictions per example to save
self.max_answer_length = 30 # filter out answers longer than this length
self.answerable_classifier = True # answerable classifier for SQuAD 2.0
self.answerable_uses_start_logits = True # more advanced answerable
# classifier using predicted start
self.answerable_weight = 0.5 # weight for answerability loss
self.joint_prediction = True # jointly predict the start and end positions
# of the answer span
self.beam_size = 20 # beam size when doing joint predictions
self.qa_na_threshold = -2.75 # threshold for "no answer" when writing SQuAD
# 2.0 test outputs
# TPU settings
self.use_tpu = False
self.num_tpu_cores = 1
self.tpu_job_name = None
self.tpu_name = None # cloud TPU to use for training
self.tpu_zone = None # GCE zone where the Cloud TPU is located in
self.gcp_project = None # project name for the Cloud TPU-enabled project
# default locations of data files
self.data_dir = data_dir
pretrained_model_dir = os.path.join(data_dir, "models", model_name)
self.raw_data_dir = os.path.join(data_dir, "finetuning_data", "{:}").format
self.vocab_file = os.path.join(pretrained_model_dir, "vocab.txt")
if not tf.io.gfile.exists(self.vocab_file):
self.vocab_file = os.path.join(self.data_dir, "vocab.txt")
task_names_str = ",".join(
kwargs["task_names"] if "task_names" in kwargs else self.task_names)
self.init_checkpoint = None if self.debug else pretrained_model_dir
self.model_dir = os.path.join(pretrained_model_dir, "finetuning_models",
task_names_str + "_model")
results_dir = os.path.join(pretrained_model_dir, "results")
self.results_txt = os.path.join(results_dir,
task_names_str + "_results.txt")
self.results_pkl = os.path.join(results_dir,
task_names_str + "_results.pkl")
qa_topdir = os.path.join(results_dir, task_names_str + "_qa")
self.qa_eval_file = os.path.join(qa_topdir, "{:}_eval.json").format
self.qa_preds_file = os.path.join(qa_topdir, "{:}_preds.json").format
self.qa_na_file = os.path.join(qa_topdir, "{:}_null_odds.json").format
self.preprocessed_data_dir = os.path.join(
pretrained_model_dir, "finetuning_tfrecords",
task_names_str + "_tfrecords" + ("-debug" if self.debug else ""))
self.test_predictions = os.path.join(
pretrained_model_dir, "test_predictions",
"{:}_{:}_{:}_predictions.pkl").format
# update defaults with passed-in hyperparameters
self.update(kwargs)
# default hyperparameters for single-task models
if len(self.task_names) == 1:
task_name = self.task_names[0]
if task_name == "rte" or task_name == "sts":
self.num_train_epochs = 10.0
elif "squad" in task_name or "qa" in task_name:
self.max_seq_length = 512
self.num_train_epochs = 2.0
self.write_distill_outputs = False
self.write_test_outputs = False
elif task_name == "chunk":
self.max_seq_length = 256
else:
self.num_train_epochs = 3.0
# default hyperparameters for different model sizes
if self.model_size == "large":
self.learning_rate = 5e-5
self.layerwise_lr_decay = 0.9
elif self.model_size == "small":
self.embedding_size = 128
# debug-mode settings
if self.debug:
self.save_checkpoints_steps = 1000000
self.use_tfrecords_if_existing = False
self.num_trials = 1
self.iterations_per_loop = 1
self.train_batch_size = 32
self.num_train_epochs = 3.0
self.log_examples = True
# passed-in-arguments override (for example) debug-mode defaults
self.update(kwargs)
def update(self, kwargs):
for k, v in kwargs.items():
if k not in self.__dict__:
raise ValueError("Unknown hparam " + k)
self.__dict__[k] = v