forked from hugochan/KATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
corpus2libsvm.py
46 lines (37 loc) · 1.56 KB
/
corpus2libsvm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
'''
Created on Jan, 2017
@author: hugo
'''
from __future__ import absolute_import
import os
import sys
import argparse
import numpy as np
from autoencoder.preprocessing.preprocessing import load_corpus, corpus2libsvm
from autoencoder.utils.io_utils import load_json
def main():
parser = argparse.ArgumentParser()
parser.add_argument('train_path', type=str, help='path to the train corpus file')
parser.add_argument('test_path', type=str, help='path to the test corpus file')
parser.add_argument('train_label', type=str, help='path to the train label file')
parser.add_argument('test_label', type=str, help='path to the test label file')
parser.add_argument('out_dir', type=str, help='path to the output dir')
parser.add_argument('-nv', '--n_val', type=int, default=1000, help='validation set size')
args = parser.parse_args()
docs = load_corpus(args.train_path)['docs'].items()
test_docs = load_corpus(args.test_path)['docs']
np.random.seed(0)
np.random.shuffle(docs)
n_val = args.n_val
train_docs = dict(docs[:-n_val])
val_docs = dict(docs[-n_val:])
# doc_labels = load_json(args.train_label)
# test_labels = load_json(args.test_label)
doc_labels = None
test_labels = None
train = corpus2libsvm(train_docs, doc_labels, os.path.join(args.out_dir, 'train.libsvm'))
val = corpus2libsvm(val_docs, doc_labels, os.path.join(args.out_dir, 'val.libsvm'))
test = corpus2libsvm(test_docs, test_labels, os.path.join(args.out_dir, 'test.libsvm'))
import pdb;pdb.set_trace()
if __name__ == "__main__":
main()