forked from hugochan/KATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_doc_word2vec.py
42 lines (33 loc) · 1.47 KB
/
run_doc_word2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
'''
Created on Jan, 2017
@author: hugo
'''
from __future__ import absolute_import
import argparse
from os import path
import numpy as np
from autoencoder.preprocessing.preprocessing import load_corpus
from autoencoder.baseline.doc_word2vec import load_w2v, doc_word2vec, get_similar_words
from autoencoder.utils.io_utils import write_file
from autoencoder.utils.op_utils import revdict
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--corpus', required=True, type=str, help='path to the corpus file')
parser.add_argument('-mf', '--mod_file', required=True, type=str, help='path to the word2vec mod file')
parser.add_argument('-sw', '--sample_words', type=str, help='path to the output sample words file')
parser.add_argument('-o', '--output', type=str, help='path to the output doc codes file')
args = parser.parse_args()
corpus = load_corpus(args.corpus)
docs, vocab_dict = corpus['docs'], corpus['vocab']
w2v = load_w2v(args.mod_file)
# doc_codes = doc_word2vec(w2v, docs, revdict(vocab_dict), args.output, avg=True)
if args.sample_words:
queries = ['weapon', 'christian', 'compani', 'israel', 'law', 'hockey', 'comput', 'space']
words = []
for each in queries:
words.append(get_similar_words(w2v, each, topn=5))
write_file(words, args.sample_words)
print 'Saved sample words file to %s' % args.sample_words
import pdb;pdb.set_trace()
if __name__ == '__main__':
main()